This page has been translated automatically.
Video Tutorials
Interface
Essentials
Advanced
How To
UnigineEditor
Interface Overview
Assets Workflow
Settings and Preferences
Working With Projects
Adjusting Node Parameters
Setting Up Materials
Setting Up Properties
Lighting
Landscape Tool
Sandworm
Using Editor Tools for Specific Tasks
Extending Editor Functionality
Built-in Node Types
Nodes
Objects
Effects
Decals
Light Sources
Geodetics
World Nodes
Sound Objects
Pathfinding Objects
Players
Programming
Fundamentals
Setting Up Development Environment
Usage Examples
C++
C#
UnigineScript
UUSL (Unified UNIGINE Shader Language)
Plugins
File Formats
Rebuilding the Engine Tools
GUI
Double Precision Coordinates
API
Containers
Common Functionality
Controls-Related Classes
Engine-Related Classes
Filesystem Functionality
GUI-Related Classes
Node-Related Classes
Objects-Related Classes
Networking Functionality
Pathfinding-Related Classes
Physics-Related Classes
Plugins-Related Classes
IG Plugin
CIGIConnector Plugin
Rendering-Related Classes
Content Creation
Content Optimization
Materials
Material Nodes Library
Miscellaneous
Input
Math
Matrix
Textures
Art Samples
Tutorials
Warning! This version of documentation is OUTDATED, as it describes an older SDK version! Please switch to the documentation for the latest SDK version.
Warning! This version of documentation describes an old SDK version which is no longer supported! Please upgrade to the latest SDK version.

Bounds-Related Classes

A bound object represents a spherical or cubical volume enclosing the whole node, used for describing node's size and location. In UNIGINE, this can be an axis-aligned bounding box (AABB) or a sphere. The size of this box or sphere is defined as the minimum one that can contain the object.

Bounds are defined only for the nodes that have visual representation or their own size. The following "abstract" objects do not have bounds at all and therefore are excluded from the spatial tree:

This approach significantly reduces the size of the tree and improves performance due to saving time on bound recalculation when transforming such nodes. Moreover, AABBs ensure very fast checks due to simplified operations, and to define such bounding box just two points are required — (Xmin, Ymin, Zmin) and (Xmax, Ymax, Zmax).

However, bound checks may be inaccurate as the bound doesn't follow the object contours precisely. In addition to that, the bounding box is axis-aligned (i.e., its edges are parallel to the coordinate axes) and when the object is rotated the bound changes. Therefore, bounds are used just to quick check if objects might be colliding. If yes, then a more accurate check should be performed.

The following types of bounds are used:

  • Local Bounds — bound objects with local coordinates which do not take into account physics and children. Obtained via the following methods of the Node class: getBoundBox() and getBoundSphere().
  • World Bounds — same as local ones, but with world coordinates. Obtained via the following methods of the Node class: getWorldBoundBox() and getWorldBoundSphere().
  • Spatial Bounds — bound objects with world coordinates used by the spatial tree, and therefore taking physics into account (shape bounds, etc.). Obtained via the following methods of the Node class: getSpatialBoundBox() and getSpatialBoundSphere().
Notice
Spatial bounds are calculated faster than World ones.

And their hierarchical analogues (taking into account all children) to be used where hierarchical bounds are required (they are slow, but offer correct calculations):

Articles in This Section

Last update: 2021-12-13
Build: ()