This page has been translated automatically.
Video Tutorials
Interface
Essentials
Advanced
How To
UnigineEditor
Interface Overview
Assets Workflow
Settings and Preferences
Working With Projects
Adjusting Node Parameters
Setting Up Materials
Setting Up Properties
Lighting
Landscape Tool
Sandworm
Using Editor Tools for Specific Tasks
Extending Editor Functionality
Built-in Node Types
Nodes
Objects
Effects
Decals
Light Sources
Geodetics
World Nodes
Sound Objects
Pathfinding Objects
Players
Programming
Fundamentals
Setting Up Development Environment
Usage Examples
C++
C#
UnigineScript
UUSL (Unified UNIGINE Shader Language)
Plugins
File Formats
Rebuilding the Engine Tools
GUI
Double Precision Coordinates
API
Containers
Common Functionality
Controls-Related Classes
Engine-Related Classes
Filesystem Functionality
GUI-Related Classes
Math Functionality
Node-Related Classes
Objects-Related Classes
Networking Functionality
Pathfinding-Related Classes
Plugins-Related Classes
IG Plugin
CIGIConnector Plugin
Rendering-Related Classes
Content Creation
Content Optimization
Materials
Material Nodes Library
Miscellaneous
Input
Math
Matrix
Textures
Art Samples
Tutorials
Warning! This version of documentation is OUTDATED, as it describes an older SDK version! Please switch to the documentation for the latest SDK version.
Warning! This version of documentation describes an old SDK version which is no longer supported! Please upgrade to the latest SDK version.

BodyRagdoll Class

Warning
The scope of applications for UnigineScript is limited to implementing materials-related logic (material expressions, scriptable materials, brush materials). Do not use UnigineScript as a language for application logic, please consider C#/C++ instead, as these APIs are the preferred ones. Availability of new Engine features in UnigineScript (beyond its scope of applications) is not guaranteed, as the current level of support assumes only fixing critical issues.
Inherits from: Body

This class is used to simulate ragdoll bodies. This body automatically generates a ragdoll skeleton, i.e. collision shapes that are bound to the bones and joints that connect them.

See Also#

  • A set of UnigineScript API samples located in the <UnigineSDK>/data/samples/physics/ folder:
    • ragdoll_00
    • ragdoll_01
    • ragdoll_02
    • ragdoll_03
    • ragdoll_04
    • ragdoll_05
    • ragdoll_06
    • ragdoll_07
    • ragdoll_10
    • ragdoll_11
    • ragdoll_12
    • ragdoll_13

BodyRagdoll Class

Members


static BodyRagdoll ( ) #

Constructor. Creates a ragdoll with default properties.

static BodyRagdoll ( Object object ) #

Constructor. Creates a ragdoll with default properties for a given object.

Arguments

  • Object object - Object approximated with the new ragdoll.

void setBoneFrameBased ( int bone, int based ) #

Sets a value indicating if bone transformations should be based on skinned animation data or conditioned by physics.

Arguments

  • int bone - Bone number.
  • int based - Positive value to set skinned animation-based transformations, 0 for ragdoll physical animation.

int isBoneFrameBased ( int bone ) #

Returns a value indicating if bone transformations are based on skinned animation data or conditioned by physics.

Arguments

  • int bone - Bone number.

Return value

Positive value if transformations are based on skinned animation, 0 if they are ragdoll physical animation.

string getBoneName ( int bone ) #

Returns the name of a given bone.

Arguments

  • int bone - Bone number.

Return value

Bone name.

int getBoneNumber ( int bone ) #

Checks whether the bone with the given number exists.

Arguments

  • int bone - The number of the bone.

Return value

Bone number.

void setBones ( Node node ) #

Imports a set of bones from a given node.

Arguments

  • Node node - Node, from which the bones will be imported.

Node getBones ( ) #

Exports a set of bones into a given node.

Return value

Node, into which the bones will be exported.

int updateBones ( ) #

Updates transformations of all ragdoll bones.

Return value

1 if transformations of all ragdoll bones were updated successfully; otherwise, 0.

Mat4 getBoneTransform ( int bone ) #

Returns the transformation of animation bone for the current frame.

Arguments

  • int bone - Bone number.

Return value

Bone transformation matrix.

void setFrameBased ( int based ) #

Sets a value indicating if ragdoll bones move according to the animation written in the file.

Arguments

  • int based - 1 to make the bones move according to the file animation, 0 to make the movements physics-driven.

int isFrameBased ( ) #

Returns a value indicating if ragdoll bones move according to the animation written in the file.

Return value

1 if the bones move according to the file animation; otherwise, 0.

void setMass ( float mass ) #

Sets a mass of the ragdoll.
Notice
If g (Earth's gravity) equals to 9.8 m/s 2, and 1 unit equals to 1 m, the mass is measured in kilograms.

Arguments

  • float mass - Mass of the ragdoll.

float getMass ( ) #

Returns the mass of the ragdoll.
Notice
If g (Earth's gravity) equals to 9.8 m/s 2, and 1 unit equals to 1 m, the mass is measured in kilograms.

Return value

Mass of the ragdoll.

int getNumBones ( ) #

Returns the number of bones in the ragdoll.

Return value

Number of bones.

void setRigidity ( float rigidity ) #

Sets rigidity of bones movement, i.e. how much interpolated linear and angular velocities of all bones affect velocities of each separate bone.

Arguments

  • float rigidity - Rigidity of bones movement. Provided value is saturated in range [0;1]:
    • By the value of 0, bones are independent.
    • By the value of 1, bones movement is uniform, as interpolated velocity greatly changes velocities of each bone.

float getRigidity ( ) #

Returns the rigidity of bones movement, i.e. how much interpolated linear and angular velocities of all bones affect velocities of each separate bone.

Return value

Rigidity of bones movement:
  • By the value of 0, bones are independent.
  • By the value of 1, bones movement is uniform, as interpolated velocity greatly changes velocities of each bone.

int createBones ( float error = 0.2, float threshold = 0.01, int capsule = 0 ) #

Automatically generates a simplified skeleton from the mesh and its bones. Each bone is approximated with a convex hull or a capsule based on given parameters.

Arguments

  • float error - Permissible error, which is used for creating convex hulls. This is an optional parameter.
  • float threshold - Threshold, which is used to detect and discard too small convex hulls. A convex hull, which volume is smaller than an average volume multiplied by the threshold, is discarded. This is an optional parameter.
  • int capsule - Approximation shape. By the value of 0, convex hull is used; the value of 1 sets capsule approximation.

Return value

Created bone number.

int findBone ( string name ) #

Searches for a bone with a given name.

Arguments

  • string name - Name of the bone.

Return value

Number of the bone in the list of bones, if it is found; otherwise, -1.
Last update: 2021-12-13
Build: ()