This page has been translated automatically.
Video Tutorials
Interface
Essentials
Advanced
How To
UnigineEditor
Interface Overview
Assets Workflow
Settings and Preferences
Working With Projects
Adjusting Node Parameters
Setting Up Materials
Setting Up Properties
Lighting
Landscape Tool
Sandworm
Using Editor Tools for Specific Tasks
Extending Editor Functionality
Built-in Node Types
Nodes
Objects
Effects
Decals
Light Sources
Geodetics
World Nodes
Sound Objects
Pathfinding Objects
Players
Programming
Fundamentals
Setting Up Development Environment
Usage Examples
C++
C#
UnigineScript
UUSL (Unified UNIGINE Shader Language)
Plugins
File Formats
Rebuilding the Engine Tools
GUI
Double Precision Coordinates
API
Containers
Common Functionality
Controls-Related Classes
Engine-Related Classes
Filesystem Functionality
GUI-Related Classes
Math Functionality
Node-Related Classes
Objects-Related Classes
Networking Functionality
Pathfinding-Related Classes
Physics-Related Classes
Plugins-Related Classes
IG Plugin
CIGIConnector Plugin
Rendering-Related Classes
Content Creation
Content Optimization
Materials
Material Nodes Library
Miscellaneous
Input
Math
Matrix
Textures
Art Samples
Tutorials
Warning! This version of documentation is OUTDATED, as it describes an older SDK version! Please switch to the documentation for the latest SDK version.
Warning! This version of documentation describes an old SDK version which is no longer supported! Please upgrade to the latest SDK version.

Ellipsoid Class

Warning
The scope of applications for UnigineScript is limited to implementing materials-related logic (material expressions, scriptable materials, brush materials). Do not use UnigineScript as a language for application logic, please consider C#/C++ instead, as these APIs are the preferred ones. Availability of new Engine features in UnigineScript (beyond its scope of applications) is not guaranteed, as the current level of support assumes only fixing critical issues.
Warning
The functionality described in this article is not available in the Community SDK edition.
You should upgrade to Engineering / Sim SDK edition to use it.

The Ellipsoid class handles the geodetic transformations:

  • Specifies the Ellipsoid settings: semimajor axis, flattening coefficient
  • Performs systems coordinates (ECF, ENU, NED, Geodetic) conversion
  • Solves direct and inverse geodetic problems with different calculation mode (Great Circle and Vincenty algorithms)

This class is used to create an Ellipsoid instance to the GeodeticPivot class.

Here is a code snippet of the Ellipsoid class usage:

Source code (UnigineScript)
// define the geodetic origin
dvec3 tomsk_origin = dvec3(58.49771,84.97437,117.0);

// create a new GeodeticPivot object
GeodeticPivot pivot = new GeodeticPivot();

// create a new ellipsoid and specify its settings
Ellipsoid ellipsoid = pivot.getEllipsoid();
ellipsoid.setSemimajorAxis(80000.0f);
ellipsoid.setMode(ELLIPSOID_MODE_FAST);

// set the ellipsoid to the pivot
pivot.setOrigin(tomsk_origin);
pivot.setEllipsoid(ellipsoid);

Ellipsoid Class

Members


static Ellipsoid ( double semimajor_axis, double flattening ) #

Constructor. Creates a new Ellipsoid class instance with given flattening and semimajor axis.

Arguments

  • double semimajor_axis - Semimajor axis.
  • double flattening - Flattening coefficient.

static Ellipsoid ( ) #

Constructor. Creates a new Ellipsoid class instance (WGS84 Ellipsoid).

dvec3 getENUSurfacePoint ( dvec3 geodetic_origin, dvec3 tangent_point ) #

Returns surface point by using tangent point coordinates.
Notice
The Up-axis (Z+) direction in ENU points upward along the ellipsoid normal, while in UNIGINE implementation of ENU it goes from the Earth's center.

Arguments

  • dvec3 geodetic_origin - The origin in ellipsoid coordinates (latitude (degrees), longitude (degrees) and altitude (meters).
  • dvec3 tangent_point - Tangent point coordinates to converted (curved) to surface coordinates (offset related to point of junction).

Return value

Surface point coordinates.

dvec3 getENUTangentPoint ( dvec3 geodetic_origin, dvec3 surface_point ) #

Returns tangent point ENU coordinates based on the geographical coordinates.
Notice
The Up-axis (Z+) direction in ENU points upward along the ellipsoid normal, while in UNIGINE implementation of ENU it goes from the Earth's center.

Arguments

  • dvec3 geodetic_origin - The origin in ellipsoid coordinates (latitude (degrees), longitude (degrees) and altitude (meters).
  • dvec3 surface_point - Surface point coordinates to be converted (flatten) to tangent point (offset related to point of junction).

Return value

Tangent point coordinates.

quat getENUWorldRotation ( dvec3 geodetic_origin ) #

Returns the world rotation quaternion in ENU coordinates.
Notice
The Up-axis (Z+) direction in ENU points upward along the ellipsoid normal, while in UNIGINE implementation of ENU it goes from the Earth's center.

Arguments

  • dvec3 geodetic_origin - The origin in ellipsoid coordinates (latitude (degrees), longitude (degrees) and altitude (meters).

Return value

World rotation in ENU coordinates.

dmat4 getENUWorldTransform ( dvec3 geodetic_origin ) #

Returns the world transformation matrix in ENU coordinates.
Notice
The Up-axis (Z+) direction in ENU points upward along the ellipsoid normal, while in UNIGINE implementation of ENU it goes from the Earth's center.

Arguments

  • dvec3 geodetic_origin - The origin in ellipsoid coordinates (latitude (degrees), longitude (degrees) and altitude (meters).

Return value

World transformation matrix in ENU coordinates.

void setFlattening ( double flattening ) #

Sets new flattening for the ellipsoid.

Arguments

  • double flattening - Flattening coefficient of the ellipsoid. If the value is 0, the ellipsoid has a sphere shape, for 1 the ellipsoid has a circle (completely flat) shape.

double getFlattening ( ) #

Returns flattening coefficient of the ellipsoid.

Return value

Flattening coefficient of the ellipsoid.

double getMeanRadius ( ) #

Returns the mean radius of the ellipsoid.

Return value

The mean radius of the ellipsoid.

int isSupported ( ) #

Returns a value indicating if the geodetics feature is enabled.

Return value

1 if the geodetics feature is enabled; otherwise, 0.

void setMode ( int mode ) #

Sets the calculation mode.

Arguments

int getMode ( ) #

Returns the calculation mode int value: 1 if the mode is MODE_ACCURATE, 0 if the mode is MODE_FAST.

Return value

1 if the mode is MODE_ACCURATE, 0 if the mode is MODE_FAST.

dvec3 getNEDSurfacePoint ( dvec3 geodetic_origin, dvec3 tangent_point ) #

Returns surface point by using tangent point coordinates.
Notice
The Down-axis direction in NED points downward along the ellipsoid normal, while in UNIGINE implementation of NED it goes through the Earth's center.

Arguments

  • dvec3 geodetic_origin - The origin in ellipsoid coordinates (latitude (degrees), longitude (degrees) and altitude (meters).
  • dvec3 tangent_point - Tangent point coordinates to converted (curved) to surface coordinates (offset related to point of junction).

Return value

Surface point coordinates.

dvec3 getNEDTangentPoint ( dvec3 geodetic_origin, dvec3 surface_point ) #

Returns tangent point NED coordinates based on the geographical coordinates.
Notice
The Down-axis direction in NED points downward along the ellipsoid normal, while in UNIGINE implementation of NED it goes through the Earth's center.

Arguments

  • dvec3 geodetic_origin - The origin in ellipsoid coordinates (latitude (degrees), longitude (degrees) and altitude (meters).
  • dvec3 surface_point - Surface point coordinates to be converted (flatten) to tangent point (offset related to point of junction).

Return value

Tangent point coordinates.

quat getNEDWorldRotation ( dvec3 geodetic_origin ) #

Returns the world rotation quaternion in NED coordinates.
Notice
The Down-axis direction in NED points downward along the ellipsoid normal, while in UNIGINE implementation of NED it goes through the Earth's center.

Arguments

  • dvec3 geodetic_origin - The origin in ellipsoid coordinates (latitude (degrees), longitude (degrees) and altitude (meters).

Return value

World rotation in NED coordinates.

dmat4 getNEDWorldTransform ( dvec3 geodetic_origin ) #

Returns the world transformation matrix in NED coordinates.
Notice
The Down-axis direction in NED points downward along the ellipsoid normal, while in UNIGINE implementation of NED it goes through the Earth's center.

Arguments

  • dvec3 geodetic_origin - The origin in ellipsoid coordinates (latitude (degrees), longitude (degrees) and altitude (meters).

Return value

World transformation matrix in NED coordinates.

void setSemimajorAxis ( double axis ) #

Sets new semimajor axis of the ellipsoid.

Arguments

  • double axis - Semimajor axis length in units.

double getSemimajorAxis ( ) #

Returns semimajor axis length of the ellipsoid in units.

Return value

Semimajor axis of the ellipsoid.

double getSemimajorEccentricitySqr ( ) #

Returns the squared eccentricity calculated along the semimajor axis.

Return value

Squared eccentricity calculated along the semimajor axis.

double getSemiminorAxis ( ) #

Returns semiminor axis of the ellipsoid in units.

Return value

Semiminor axis of the ellipsoid in units.

double getSemiminorEccentricitySqr ( ) #

Returns the squared eccentricity calculated along the semiminor axis.

Return value

Squared eccentricity calculated along the semiminor axis.

dvec3 solveGeodeticDirect ( dvec3 geodetic_start, double bearing, double distance ) #

Solves the direct geodetic problem: calculates end point coordinates on the ellipsoid by using given start point, distance between points, and bearing value.

Arguments

  • dvec3 geodetic_start - Start point on the ellipsoid.
  • double bearing - Bearing value.
  • double distance - Distance between two points on the ellipsoid.

void solveGeodeticInverse ( dvec3 geodetic_start, dvec3 geodetic_end, double & bearing, double & distance ) #

Solves the inverse geodetic problem: calculates distance and bearing values by using given start and end points on the ellipsoid.

Arguments

  • dvec3 geodetic_start - Start point on the ellipsoid.
  • dvec3 geodetic_end - End point on the ellipsoid.
  • double & bearing - Variable to save the calculated bearing value.
  • double & distance - Variable to save the calculated distance value.

dvec3 toECF ( dvec3 geodetic_coords ) #

Converts geodetic coordinates to Cartesian (ECF).

Arguments

  • dvec3 geodetic_coords - Ellipsoid coordinates (latitude (degrees), longitude (degrees) and altitude (meters)) to be converted to Cartesian.

Return value

Cartesian coordinates.

dvec3 toENU ( dvec3 geodetic_origin, dvec3 geodetic_coords ) #

Converts geodetic coordinates to ENU (East, North, Up).
Notice
The Up-axis (Z+) direction in ENU points upward along the ellipsoid normal, while in UNIGINE implementation of ENU it goes from the Earth's center.

Arguments

  • dvec3 geodetic_origin - The origin in ellipsoid coordinates (latitude (degrees), longitude (degrees) and altitude (meters).
  • dvec3 geodetic_coords - Coordinates to be converted to ENU.

Return value

ENU coordinates.

dvec3 toGeodetic ( dvec3 ecf_coords, int need_alt = 1 ) #

Converts Cartesian (ECF) coordinates to Ellipsoid.

Arguments

  • dvec3 ecf_coords - Cartesian ECF coordinates to be converted.
  • int need_alt - Flag indicating if altitude is to be calculated. 1 to calculate altitude, 0 - to skip altitude calculation.The default value is 1.

Return value

Ellipsoid coordinates (latitude (degrees), longitude (degrees) and altitude (meters)

dvec3 toNED ( dvec3 geodetic_origin, dvec3 geodetic_coords ) #

Converts geodetics coordinates to NED (North, East, Down).
Notice
The Down-axis direction in NED points downward along the ellipsoid normal, while in UNIGINE implementation of NED it goes through the Earth's center.

Arguments

  • dvec3 geodetic_origin - The origin in ellipsoid coordinates (latitude (degrees), longitude (degrees) and altitude (meters).
  • dvec3 geodetic_coords - Coordinates to be converted to NED.

Return value

NED coordinates.
Last update: 2021-12-13
Build: ()