This page has been translated automatically.
Видеоуроки
Интерфейс
Основы
Продвинутый уровень
Подсказки и советы
Основы
Программирование на C#
Рендеринг
Профессиональный уровень (SIM)
Принципы работы
Свойства (properties)
Компонентная Система
Рендер
Физика
Редактор UnigineEditor
Обзор интерфейса
Работа с ассетами
Контроль версий
Настройки и предпочтения
Работа с проектами
Настройка параметров ноды
Setting Up Materials
Настройка свойств
Освещение
Sandworm
Использование инструментов редактора для конкретных задач
Расширение функционала редактора
Встроенные объекты
Ноды (Nodes)
Объекты (Objects)
Эффекты
Декали
Источники света
Geodetics
World-ноды
Звуковые объекты
Объекты поиска пути
Player-ноды
Программирование
Основы
Настройка среды разработки
Примеры использования
C++
C#
UnigineScript
UUSL (Unified UNIGINE Shader Language)
Плагины
Форматы файлов
Материалы и шейдеры
Rebuilding the Engine Tools
Интерфейс пользователя (GUI)
VR Development
Двойная точность координат
API
Animations-Related Classes
Containers
Common Functionality
Controls-Related Classes
Engine-Related Classes
Filesystem Functionality
GUI-Related Classes
Math Functionality
Node-Related Classes
Objects-Related Classes
Networking Functionality
Pathfinding-Related Classes
Plugins-Related Classes
IG Plugin
CIGIConnector Plugin
Rendering-Related Classes
VR-Related Classes
Работа с контентом
Оптимизация контента
Материалы
Визуальный редактор материалов
Сэмплы материалов
Material Nodes Library
Miscellaneous
Input
Math
Matrix
Textures
Art Samples
Учебные материалы
Внимание! Эта версия документация УСТАРЕЛА, поскольку относится к более ранней версии SDK! Пожалуйста, переключитесь на самую актуальную документацию для последней версии SDK.
Внимание! Эта версия документации описывает устаревшую версию SDK, которая больше не поддерживается! Пожалуйста, обновитесь до последней версии SDK.

Unigine::JointHinge Class

Header: #include <UniginePhysics.h>
Inherits from: Joint

This class is used to create hinge joints.

Example#

The following code illustrates connection of two bodies (b0 and b1) using a hinge joint.

Source code (C++)
include <UniginePhysics.h>

/* .. */

JointHingePtr joint = JointHinge::create(b0, b1);

// setting joint axis coordinates
joint->setWorldAxis(vec3(1.0f, 0.0f, 0.0f));

// setting common joint constraint parameters
joint->setLinearRestitution(0.4f);
joint->setAngularRestitution(0.4f);
joint->setLinearSoftness(0.4f);
joint->setAngularSoftness(0.4f);

// setting angular damping
joint->setAngularDamping(8.0f);

// setting angular limits, in degrees [-20; 20]
joint->setAngularLimitFrom(-20.0f);
joint->setAngularLimitTo(20.0f);

// setting spring rigidity coefficient
joint->setAngularSpring(8.0f);

// setting number of iterations
joint->setNumIterations(16);

See Also#

Usage examples:

JointHinge Class

Members


static JointHingePtr create ( ) #

Constructor. Creates a hinge joint with an anchor at the origin of the world coordinates.

static JointHingePtr create ( const Ptr<Body> & body0, const Ptr<Body> & body1 ) #

Constructor. Creates a hinge joint connecting two given bodies. An anchor is placed between centers of mass of the bodies.

Arguments

  • const Ptr<Body> & body0 - First body to be connected with the joint.
  • const Ptr<Body> & body1 - Second body to be connected with the joint.

static JointHingePtr create ( const Ptr<Body> & body0, const Ptr<Body> & body1, const Math::Vec3 & anchor, const Math::vec3 & axis ) #

Constructor. Creates a hinge joint connecting two given bodies with specified axis coordinates and an anchor placed at specified coordinates.

Arguments

  • const Ptr<Body> & body0 - First body to be connected with the joint.
  • const Ptr<Body> & body1 - Second body to be connected with the joint.
  • const Math::Vec3 & anchor - Anchor coordinates.
  • const Math::vec3 & axis - Axis coordinates.

void setAngularAngle ( float angle ) #

Sets a target angle of the attached angular spring. The spring tries to rotate the connected bodies so that they make this angle.

Arguments

  • float angle - Angle in degrees. The provided value will be saturated in the range [-180; 180].

float getAngularAngle ( ) #

Returns the target angle of the attached angular spring. The spring tries to rotate the connected bodies so that they make this angle.

Return value

Target angle in degrees.

void setAngularDamping ( float damping ) #

Sets an angular damping of the joint.

Arguments

  • float damping - Angular damping. If a negative value is provided, 0 will be used instead.

float getAngularDamping ( ) #

Returns the angular damping of the joint.

Return value

Angular damping.

void setAngularLimitFrom ( float from ) #

Sets a low rotation limit angle. Rotation limit specifies how much a connected body can rotate around the joint axis.

Arguments

  • float from - Angle in degrees. The provided value will be saturated in the range [-180; 180].

float getAngularLimitFrom ( ) #

Returns the low rotation limit angle. Rotation limit specifies how much a connected body can rotate around the joint axis.

Return value

Low rotation limit angle in degrees.

void setAngularLimitTo ( float to ) #

Sets a high rotation limit angle. Rotation limit specifies how much a connected body can rotate around the joint axis.

Arguments

  • float to - Angle in degrees. The provided value will be saturated in the range [-180; 180].

float getAngularLimitTo ( ) #

Returns the high rotation limit angle. Rotation limit specifies how much a connected body can rotate around the joint axis.

Return value

High rotation limit angle in degrees.

void setAngularSpring ( float spring ) #

Sets a rigidity coefficient of the angular spring.

Arguments

  • float spring - Rigidity coefficient. If a negative value is provided, 0 will be used instead. 0 detaches the spring.

float getAngularSpring ( ) #

Returns the rigidity coefficient of the angular spring. 0 means that the spring is not attached.

Return value

Rigidity coefficient.

void setAngularTorque ( float torque ) #

Sets a maximum torque of the angular motor.

Arguments

  • float torque - Maximum torque. If a negative value is provided, 0 will be used instead. 0 detaches the motor.

float getAngularTorque ( ) #

Returns the maximum torque of the attached angular motor. 0 means that the motor is not attached.

Return value

Maximum torque.

void setAngularVelocity ( float velocity ) #

Sets a target velocity of the attached angular motor.

Arguments

  • float velocity - Velocity in radians per second.

float getAngularVelocity ( ) #

Returns the target velocity of the attached angular motor.

Return value

Target velocity in radians per second.

void setAxis0 ( const Math::vec3 & axis0 ) #

Sets an axis of the first connected body.

Arguments

  • const Math::vec3 & axis0 - Axis of the first body. The provided vector will be normalized.

Math::vec3 getAxis0 ( ) #

Returns the axis of the first connected body.

Return value

Axis of the first body.

void setAxis1 ( const Math::vec3 & axis1 ) #

Sets an axis of the second connected body.

Arguments

  • const Math::vec3 & axis1 - Axis of the second body. The provided vector will be normalized.

Math::vec3 getAxis1 ( ) #

Returns the axis of the second connected body.

Return value

Axis of the second body.

float getCurrentAngularAngle ( ) #

Returns the current angle between the bodies.

Return value

Current angle in degrees.

float getCurrentAngularVelocity ( ) #

Returns the current velocity of the motor, i.e. the difference between angular velocities of two bodies connected with a hinge relative the hinge axis.
Notice
This function returns the valid velocity only if both bodies are of BodyRigid type. Otherwise, 0 is returned.

Return value

Current motor velocity in radians per second.

void setWorldAxis ( const Math::vec3 & axis ) #

Sets a joint axis. This method updates axes of the connected bodies.

Arguments

  • const Math::vec3 & axis - Joint axis.

Math::vec3 getWorldAxis ( ) #

Returns the joint axis. The joint axis is calculated based on the axes of the connected bodies.

Return value

Joint axis.
Last update: 19.12.2023
Build: ()