This page has been translated automatically.
视频教程
界面
要领
高级
实用建议
基础
专业(SIM)
UnigineEditor
界面概述
资源工作流程
Version Control
设置和首选项
项目开发
调整节点参数
Setting Up Materials
设置属性
照明
Sandworm
使用编辑器工具执行特定任务
如何擴展編輯器功能
嵌入式节点类型
Nodes
Objects
Effects
Decals
光源
Geodetics
World Nodes
Sound Objects
Pathfinding Objects
Players
编程
基本原理
搭建开发环境
使用范例
C++
C#
UnigineScript
统一的Unigine着色器语言 UUSL (Unified UNIGINE Shader Language)
Plugins
File Formats
材质和着色器
Rebuilding the Engine Tools
GUI
双精度坐标
应用程序接口
Animations-Related Classes
Containers
Common Functionality
Controls-Related Classes
Engine-Related Classes
Filesystem Functionality
GUI-Related Classes
Math Functionality
Node-Related Classes
Objects-Related Classes
Networking Functionality
Physics-Related Classes
Plugins-Related Classes
IG Plugin
CIGIConnector Plugin
Rendering-Related Classes
VR-Related Classes
创建内容
内容优化
材质
Material Nodes Library
Miscellaneous
Input
Math
Matrix
Textures
Art Samples
Tutorials

Unigine::Navigation Class

Header: #include <UniginePathFinding.h>
Inherits from: Node
Warning
3D navigation feature is experimental and not recommended for production use.

This class contains functions that enable to get or change parameters of a navigation area within which pathfinding is performed. The navigation area can be either a navigation sector or a navigation mesh.

For example, by using the functions of this class, you can scale velocity of the point moving inside the navigation area. Or you can change the danger factor of the area.

See Also#

  • Articles of the Navigation Area section
  • A set of UnigineScript API samples located in the <UnigineSDK>/data/samples/paths/ folder
  • Navigation sample in C# Component Samples suite

Navigation Class

Members


void setDangerous ( float dangerous ) #

Sets the danger factor that indicates if the point that moves inside the navigation area should try to avoid this area.
Notice
If the danger factor exceeds the maximum danger factor set for the route, the navigation area will be excluded from pathfinding calculations.

Arguments

  • float dangerous - Danger factor.

float getDangerous ( ) #

Returns the current danger factor that indicates if the point that moves inside the navigation area should try to avoid this area.
Notice
If the danger factor exceeds the maximum danger factor set for the route, the navigation area will be excluded from pathfinding calculations.

Return value

The danger factor.

Ptr<Navigation> getNavigation ( int num ) #

Returns the specified connected navigation area.

Arguments

  • int num - The navigation area number.

Return value

The navigation area.

void setNavigationMask ( int mask ) #

Sets a navigation mask for the navigation area. The navigation mask of the navigation area must match the navigation mask of the route that is calculated within it. Otherwise, the area will not participate in pathfinding. By using the navigation mask, you can specify navigation ares that must be ignored during pathfinding.

Arguments

  • int mask - An integer value, each bit of which is used to set a mask.

int getNavigationMask ( ) #

Returns the current navigation mask of the navigation area. The navigation mask of the navigation area must match the navigation mask of the route that is calculated within it. Otherwise, the area will not participate in pathfinding.

Return value

An integer value, each bit of which is used to set a mask.

int getNumNavigations ( ) #

Returns the number of navigation areas that intersect the current one.

Return value

The number of connected navigation areas.

void setQuality ( int quality ) #

Sets a quality of optimization of the route that has already been calculated. This value specifies the number of iterations that are used for taking the short cut. However, the higher the value, the longer the route calculation will take.

Arguments

  • int quality - A quality value. If a negative value is provided, 0 will be used instead.

int getQuality ( ) #

Returns the quality of optimization of the route that has already been calculated. The quality value specifies the number of iterations that are used for taking the short cut.

Return value

The quality value.

void setVelocity ( float velocity ) #

Sets a scaling factor for velocity of the point that moves inside the navigation area along the calculated route.

Arguments

  • float velocity - A velocity scaling factor.

float getVelocity ( ) #

Returns the current scaling factor for velocity of the point that moves inside the navigation area along the calculated route.

Return value

The velocity scaling factor.

int inside ( const Ptr<Navigation> & navigation ) #

Returns a value indicating if the specified Navigation area is a part of the Navigation area.

Arguments

  • const Ptr<Navigation> & navigation - Navigation area

int inside2D ( const Math::Vec3 & point, float radius ) #

Depending on the type of the navigation area, the function performs the following:
  • For navigation sectors, it checks whether the given point is inside the navigation sector. The height of the navigation sector (Z coordinate) is ignored.
  • For navigation meshes, it checks whether the given point is inside the navigation mesh and the distance from the point to the mesh is in range [-height;height]. Here height is a height of the navigation mesh.

Arguments

  • const Math::Vec3 & point - Point coordinates.
  • float radius - The radius of the point. The radius is used to exclude exceeding the navigation mesh by the point. If the radius is set, it is more likely that the point will be inside the navigation mesh.
    Notice
    When calling the function for NavigationSector, this option is irrelevant.

Return value

1 if the point is inside the navigation area; otherwise, 0.

int inside3D ( const Math::Vec3 & point, float radius ) #

Depending on the type of the navigation area, the function performs the following:
  • For navigation sectors, it checks whether the given point is inside the navigation area. Notice that the height of the navigation sector (Z coordinate) is also taken into account.
  • For navigation meshes, it checks whether the given point is inside the navigation mesh and the distance from the point to the mesh is in range [0;height]. Here height is a height of the navigation mesh.

Arguments

  • const Math::Vec3 & point - Point coordinates.
  • float radius - The radius of the point. The radius is used to exclude exceeding the navigation mesh by the point. If the radius is set, it is more likely that the point will be inside the navigation mesh.
    Notice
    When calling the function for NavigationSector, this option is irrelevant.

Return value

1 it the point is inside the navigation area; otherwise, 0.
Last update: 2024-12-13
Build: ()