This page has been translated automatically.
Video Tutorials
Interface
Essentials
Advanced
How To
Basics
Rendering
Professional (SIM)
UnigineEditor
Interface Overview
Assets Workflow
Version Control
Settings and Preferences
Working With Projects
Adjusting Node Parameters
Setting Up Materials
Setting Up Properties
Lighting
Sandworm
Using Editor Tools for Specific Tasks
Extending Editor Functionality
Built-in Node Types
Nodes
Objects
Effects
Decals
Light Sources
Geodetics
World Nodes
Sound Objects
Pathfinding Objects
Players
Programming
Fundamentals
Setting Up Development Environment
Usage Examples
C++
C#
UnigineScript
UUSL (Unified UNIGINE Shader Language)
Plugins
File Formats
Materials and Shaders
Rebuilding the Engine Tools
GUI
Double Precision Coordinates
API Reference
Animations-Related Classes
Containers
Common Functionality
Controls-Related Classes
Engine-Related Classes
Filesystem Functionality
GUI-Related Classes
Math Functionality
Node-Related Classes
Objects-Related Classes
Networking Functionality
Pathfinding-Related Classes
Plugins-Related Classes
IG Plugin
CIGIConnector Plugin
Rendering-Related Classes
VR-Related Classes
Content Creation
Content Optimization
Materials
Material Nodes Library
Miscellaneous
Input
Math
Matrix
Textures
Art Samples
Tutorials

JointPrismatic Class

Warning
The scope of applications for UnigineScript is limited to implementing materials-related logic (material expressions, scriptable materials, brush materials). Do not use UnigineScript as a language for application logic, please consider C#/C++ instead, as these APIs are the preferred ones. Availability of new Engine features in UnigineScript (beyond its scope of applications) is not guaranteed, as the current level of support assumes only fixing critical issues.
Inherits from: Joint

This class is used to create prismatic joints.

Example#

The following code illustrates connection of two bodies (b0 and b1) using a prismatic joint.

Source code (UnigineScript)
JointPrismatic joint = class_remove(new JointPrismatic(b0, b1));
	
// setting joint axis coordinates
joint.setWorldAxis(vec3(0.0f, 0.0f, 1.0f));

// setting common joint constraint parameters
joint.setLinearRestitution(0.4f);
joint.setAngularRestitution(0.4f);
joint.setLinearSoftness(0.4f);
joint.setAngularSoftness(0.4f);

// setting linear damping
joint.setLinearDamping(4.0f);

// setting linear limits [-1.5; 1.5]
joint.setLinearLimitFrom(-1.5f);
joint.setLinearLimitTo(1.5f);

// setting number of iterations
joint.setNumIterations(16);

See Also#

Usage examples:

JointPrismatic Class

Members

float getCurrentLinearVelocity() const#

Returns the current velocity of the linear motor.

Return value

Current current velocity in units per second.

float getCurrentLinearDistance() const#

Returns the current distance between the bodies.

Return value

Current current distance in units.

void setWorldRotation ( mat3 rotation ) #

Sets a new rotation matrix of the anchor point in the world system of coordinates.

Arguments

  • mat3 rotation - The rotation matrix in the world coordinate space.

mat3 getWorldRotation() const#

Returns the current rotation matrix of the anchor point in the world system of coordinates.

Return value

Current rotation matrix in the world coordinate space.

void setRotation0 ( mat3 rotation0 ) #

Sets a new rotation matrix of the anchor point in the system of coordinates of the first connected body.

Arguments

  • mat3 rotation0 - The rotation matrix in the body coordinate space.

mat3 getRotation0() const#

Returns the current rotation matrix of the anchor point in the system of coordinates of the first connected body.

Return value

Current rotation matrix in the body coordinate space.

void setRotation1 ( mat3 rotation1 ) #

Sets a new rotation matrix of the anchor point in the system of coordinates of the second connected body.

Arguments

  • mat3 rotation1 - The rotation matrix in the body coordinate space.

mat3 getRotation1() const#

Returns the current rotation matrix of the anchor point in the system of coordinates of the second connected body.

Return value

Current rotation matrix in the body coordinate space.

void setLinearVelocity ( float velocity ) #

Sets a new target velocity of the attached linear motor.

Arguments

  • float velocity - The target velocity in units per second.

float getLinearVelocity() const#

Returns the current target velocity of the attached linear motor.

Return value

Current target velocity in units per second.

void setLinearSpring ( float spring ) #

Sets a new rigidity coefficient of the linear spring. 0 means that the spring is not attached.

Arguments

  • float spring - The rigidity coefficient. If a negative value is provided, 0 will be used instead. 0 detaches the spring.

float getLinearSpring() const#

Returns the current rigidity coefficient of the linear spring. 0 means that the spring is not attached.

Return value

Current rigidity coefficient. If a negative value is provided, 0 will be used instead. 0 detaches the spring.

void setLinearLimitTo ( float to ) #

Sets a new high limit distance. This limit specifies how far a connected body can move along the joint axis.

Arguments

  • float to - The high limit distance in units.

float getLinearLimitTo() const#

Returns the current high limit distance. This limit specifies how far a connected body can move along the joint axis.

Return value

Current high limit distance in units.

void setLinearLimitFrom ( float from ) #

Sets a new low limit distance. This limit specifies how far a connected body can move along the joint axis.

Arguments

  • float from - The low limit distance in units.

float getLinearLimitFrom() const#

Returns the current low limit distance. This limit specifies how far a connected body can move along the joint axis.

Return value

Current low limit distance in units.

void setLinearForce ( float force ) #

Sets a new maximum force of the attached linear motor. 0 means that the motor is not attached.

Arguments

  • float force - The maximum force. If a negative value is provided, 0 will be used instead. 0 detaches the motor.

float getLinearForce() const#

Returns the current maximum force of the attached linear motor. 0 means that the motor is not attached.

Return value

Current maximum force. If a negative value is provided, 0 will be used instead. 0 detaches the motor.

void setLinearDistance ( float distance ) #

Sets a new target distance of the attached linear spring. The spring tries to move the connected bodies so that to keep this distance between them.

Arguments

  • float distance - The target distance in units.

float getLinearDistance() const#

Returns the current target distance of the attached linear spring. The spring tries to move the connected bodies so that to keep this distance between them.

Return value

Current target distance in units.

void setLinearDamping ( float damping ) #

Sets a new linear damping of the joint.

Arguments

  • float damping - The linear damping. If a negative value is provided, 0 will be used instead.

float getLinearDamping() const#

Returns the current linear damping of the joint.

Return value

Current linear damping. If a negative value is provided, 0 will be used instead.

void setWorldAxis ( vec3 axis ) #

Sets a new joint axis. The joint axis is calculated based on the axes of the connected bodies.

Arguments

  • vec3 axis - The joint axis.

vec3 getWorldAxis() const#

Returns the current joint axis. The joint axis is calculated based on the axes of the connected bodies.

Return value

Current joint axis.

void setAxis0 ( vec3 axis0 ) #

Sets a new axis of the first connected body.

Arguments

  • vec3 axis0 - The axis of the first body. The provided vector will be normalized.

vec3 getAxis0() const#

Returns the current axis of the first connected body.

Return value

Current axis of the first body. The provided vector will be normalized.

static JointPrismatic ( ) #

Constructor. Creates a prismatic joint with an anchor at the origin of the world coordinates.

static JointPrismatic ( Body body0, Body body1 ) #

Constructor. Creates a prismatic joint connecting two given bodies. An anchor is placed between centers of mass of the bodies.

Arguments

  • Body body0 - First body to be connected with the joint.
  • Body body1 - Second body to be connected with the joint.

static JointPrismatic ( Body body0, Body body1, Vec3 anchor, vec3 axis ) #

Constructor. Creates a prismatic joint connecting two given bodies with specified axis coordinates and an anchor placed at specified coordinates.

Arguments

  • Body body0 - First body to be connected with the joint.
  • Body body1 - Second body to be connected with the joint.
  • Vec3 anchor - Anchor coordinates.
  • vec3 axis - Axis coordinates.

The information on this page is valid for UNIGINE 2.20 SDK.

Last update: 2024-08-07
Build: ()