This page has been translated automatically.
Video Tutorials
Interface
Essentials
Advanced
How To
Basics
Rendering
Professional (SIM)
UnigineEditor
Interface Overview
Assets Workflow
Version Control
Settings and Preferences
Working With Projects
Adjusting Node Parameters
Setting Up Materials
Setting Up Properties
Lighting
Sandworm
Using Editor Tools for Specific Tasks
Extending Editor Functionality
Built-in Node Types
Nodes
Objects
Effects
Decals
Light Sources
Geodetics
World Nodes
Sound Objects
Pathfinding Objects
Players
Programming
Fundamentals
Setting Up Development Environment
Usage Examples
C++
C#
UnigineScript
UUSL (Unified UNIGINE Shader Language)
Plugins
File Formats
Materials and Shaders
Rebuilding the Engine Tools
GUI
Double Precision Coordinates
API Reference
Animations-Related Classes
Containers
Common Functionality
Controls-Related Classes
Engine-Related Classes
Filesystem Functionality
GUI-Related Classes
Math Functionality
Node-Related Classes
Objects-Related Classes
Networking Functionality
Pathfinding-Related Classes
Plugins-Related Classes
IG Plugin
CIGIConnector Plugin
Rendering-Related Classes
VR-Related Classes
Content Creation
Content Optimization
Materials
Material Nodes Library
Miscellaneous
Input
Math
Matrix
Textures
Art Samples
Tutorials

JointHinge Class

Warning
The scope of applications for UnigineScript is limited to implementing materials-related logic (material expressions, scriptable materials, brush materials). Do not use UnigineScript as a language for application logic, please consider C#/C++ instead, as these APIs are the preferred ones. Availability of new Engine features in UnigineScript (beyond its scope of applications) is not guaranteed, as the current level of support assumes only fixing critical issues.
Inherits from: Joint

This class is used to create hinge joints.

Example#

The following code illustrates connection of two bodies (b0 and b1) using a hinge joint.

Source code (UnigineScript)
JointHinge joint = class_remove(new JointHinge(b0, b1));

// setting joint axis coordinates
joint.setWorldAxis(vec3(1.0f, 0.0f, 0.0f));

// setting common joint constraint parameters
joint.setLinearRestitution(0.4f);
joint.setAngularRestitution(0.4f);
joint.setLinearSoftness(0.4f);
joint.setAngularSoftness(0.4f);

// setting angular damping
joint.setAngularDamping(8.0f);

// setting angular limits, in degrees [-20; 20]
joint.setAngularLimitFrom(-20.0f);
joint.setAngularLimitTo(20.0f);

// setting spring rigidity coefficient
joint.setAngularSpring(8.0f);

// setting number of iterations
joint.setNumIterations(16);

See Also#

Usage examples:

JointHinge Class

Members

float getCurrentAngularVelocity() const#

Returns the current velocity of the motor, i.e. the difference between angular velocities of two bodies connected with a hinge relative the hinge axis.
Notice
The valid velocity is returned only if both bodies are of BodyRigid type. Otherwise, 0 is returned.

Return value

Current motor velocity, in radians per second.

float getCurrentAngularAngle() const#

Returns the current angle between the bodies.

Return value

Current current angle in degrees.

void setAngularVelocity ( float velocity ) #

Sets a new target velocity of the attached angular motor.

Arguments

  • float velocity - The target velocity in radians per second.

float getAngularVelocity() const#

Returns the current target velocity of the attached angular motor.

Return value

Current target velocity in radians per second.

void setAngularSpring ( float spring ) #

Sets a new rigidity coefficient of the angular spring. 0 means that the spring is not attached.

Arguments

  • float spring - The rigidity coefficient. If a negative value is provided, 0 will be used instead. 0 detaches the spring.

float getAngularSpring() const#

Returns the current rigidity coefficient of the angular spring. 0 means that the spring is not attached.

Return value

Current rigidity coefficient. If a negative value is provided, 0 will be used instead. 0 detaches the spring.

void setAngularLimitTo ( float to ) #

Sets a new high rotation limit angle. Rotation limit specifies how much a connected body can rotate around the joint axis

Arguments

  • float to - The high rotation limit angle in degrees. The provided value will be saturated in the range [-180; 180].

float getAngularLimitTo() const#

Returns the current high rotation limit angle. Rotation limit specifies how much a connected body can rotate around the joint axis

Return value

Current high rotation limit angle in degrees. The provided value will be saturated in the range [-180; 180].

void setAngularLimitFrom ( float from ) #

Sets a new low rotation limit angle. Rotation limit specifies how much a connected body can rotate around the joint axis.

Arguments

  • float from - The Low rotation limit angle in degrees. The provided value will be saturated in the range [-180; 180].

float getAngularLimitFrom() const#

Returns the current low rotation limit angle. Rotation limit specifies how much a connected body can rotate around the joint axis.

Return value

Current Low rotation limit angle in degrees. The provided value will be saturated in the range [-180; 180].

void setAngularTorque ( float torque ) #

Sets a new maximum torque of the attached angular motor. 0 means that the motor is not attached.

Arguments

  • float torque - The Maximum torque. If a negative value is provided, 0 will be used instead. 0 detaches the motor.

float getAngularTorque() const#

Returns the current maximum torque of the attached angular motor. 0 means that the motor is not attached.

Return value

Current Maximum torque. If a negative value is provided, 0 will be used instead. 0 detaches the motor.

void setAngularDamping ( float damping ) #

Sets a new angular damping of the joint.

Arguments

  • float damping - The angular damping. If a negative value is provided, 0 will be used instead.

float getAngularDamping() const#

Returns the current angular damping of the joint.

Return value

Current angular damping. If a negative value is provided, 0 will be used instead.

void setAngularAngle ( float angle ) #

Sets a new target angle of the attached angular spring. the spring tries to rotate the connected bodies so that they make this angle.

Arguments

  • float angle - The target angle in degrees. The provided value will be saturated in the range [-180; 180].

float getAngularAngle() const#

Returns the current target angle of the attached angular spring. the spring tries to rotate the connected bodies so that they make this angle.

Return value

Current target angle in degrees. The provided value will be saturated in the range [-180; 180].

void setWorldAxis ( vec3 axis ) #

Sets a new joint axis. The joint axis is calculated based on the axes of the connected bodies.

Arguments

  • vec3 axis - The joint axis.

vec3 getWorldAxis() const#

Returns the current joint axis. The joint axis is calculated based on the axes of the connected bodies.

Return value

Current joint axis.

void setAxis0 ( vec3 axis0 ) #

Sets a new axis of the first connected body.

Arguments

  • vec3 axis0 - The axis of the first body. The provided vector will be normalized.

vec3 getAxis0() const#

Returns the current axis of the first connected body.

Return value

Current axis of the first body. The provided vector will be normalized.

void setAxis1 ( vec3 axis1 ) #

Sets a new axis of the second connected body.

Arguments

  • vec3 axis1 - The axis of the second body. The provided vector will be normalized.

vec3 getAxis1() const#

Returns the current axis of the second connected body.

Return value

Current axis of the second body. The provided vector will be normalized.

static JointHinge ( ) #

Constructor. Creates a hinge joint with an anchor at the origin of the world coordinates.

static JointHinge ( Body body0, Body body1 ) #

Constructor. Creates a hinge joint connecting two given bodies. An anchor is placed between centers of mass of the bodies.

Arguments

  • Body body0 - First body to be connected with the joint.
  • Body body1 - Second body to be connected with the joint.

static JointHinge ( Body body0, Body body1, Vec3 anchor, vec3 axis ) #

Constructor. Creates a hinge joint connecting two given bodies with specified axis coordinates and an anchor placed at specified coordinates.

Arguments

  • Body body0 - First body to be connected with the joint.
  • Body body1 - Second body to be connected with the joint.
  • Vec3 anchor - Anchor coordinates.
  • vec3 axis - Axis coordinates.

The information on this page is valid for UNIGINE 2.20 SDK.

Last update: 2024-08-07
Build: ()