Creating a Simple Mechanism Using Various Types of Joints
This example shows how to:
- Create a simple mechanism using various types of joints.
- Animate the mechanism using joint motors.
The basic workflow of creating and animating a simple mechanism is as follows:
- Create geometry for all parts of the mechanism.
- Assign bodies and collision shapes to the parts.
- Set up masses for the parts.It is very important to ensure mass balance – avoid connection of too heavy bodies to light ones, otherwise the joints may become unstable!
- Connect all parts of the mechanism using appropriate types of joints. Set up joint parameters.
- Animate the mechanism using joint motors.
Creating Geometry and Adding Some Physics
The first thing we are going to address in this tutorial is the geometry of our mechanism (see the picture above). We are going to create the following parts:
- 2 blue guide bars
- a red piston
- a green rod
- a black wheel
- 2 dummy objects with dummy bodies to attach the parts of our mechanism to.
/// function, creating a named dummy body of a specified size at pos
ObjectDummyPtr createBodyDummy(char *name, vec3 size, Mat4 transform)
{
// creating a dummy object
ObjectDummyPtr dummy = ObjectDummy::create();
// setting parameters
dummy->setWorldTransform(transform);
dummy->setName(name);
//assigning a dummy body to the dummy object and adding a box shape to it
BodyDummy::create(dummy->getObject());
dummy->getBody()->addShape(ShapeBox::create(size)->getShape(), translate(0.0f, 0.0f, 0.0f));
return dummy;
}
/// function, creating a named box having a specified size, color and transformation with a body and a shape
ObjectMeshDynamicPtr createBodyBox(char *name, vec3 size, float mass, vec4 color, Mat4 transform)
{
// creating geometry and setting up its parameters (name, material, property and transformation)
ObjectMeshDynamicPtr OMD = Primitives::createBox(size);
OMD->setWorldTransform(transform);
OMD->setMaterial("mesh_base", "*");
OMD->setMaterialParameter("albedo_color", color, 0);
OMD->setProperty("surface_base", "*");
OMD->setName(name);
// adding physics, i.e. a rigid body and a box shape with specified mass
BodyRigidPtr body = BodyRigid::create(OMD->getObject());
body->addShape(ShapeBox::create(size)->getShape(), translate(vec3(0.0f)));
OMD->getBody()->getShape(0)->setMass(mass);
return OMD;
}
/// function, creating a named cylinder having a specified size, color and transformation with a body and a shape
ObjectMeshDynamicPtr createBodyCylinder(char *name, float radius, float height, float mass, vec4 color, Mat4 transform)
{
// creating geometry and setting up its parameters (name, material, property and transformation)
ObjectMeshDynamicPtr OMD = Primitives::createCylinder(radius, height, 1, 32);
OMD->setWorldTransform(transform);
OMD->setMaterial("mesh_base", "*");
OMD->setMaterialParameter("albedo_color", color, 0);
OMD->setProperty("surface_base", "*");
OMD->setName(name);
// adding physics, i.e. a rigid body and a cylinder shape with specified mass
BodyRigidPtr body = BodyRigid::create(OMD->getObject());
body->addShape(ShapeCylinder::create(radius, height)->getShape(), translate(vec3(0.0f)));
OMD->getBody()->getShape(0)->setMass(mass);
return OMD;
}
Now using these functions we can create our mechanism. We are going to use DynamicMesh objects for the parts and Dummy objects for mounting points.
// creating parts of the mechanism
Mat4 transform = Mat4(translate(0.0f, 0.0f, 10.0f)*rotateY(90.0f));
piston = createBodyBox("piston", vec3(1.0f, 2.0f, 0.5f), 15.0f, vec4(1.0f, 0.1f, 0.1f, 1.0f), transform * Mat4(translate(0.0f, 3.5f, 0.0f)));
guide_bar1 = createBodyBox("guide_bar1", vec3(1.0f, 9.0f, 0.5f), 15.0f, vec4(0.0f, 0.1f, 0.7f, 1.0f), transform* Mat4(translate(1.0f, 3.0f, 0.0f)));
guide_bar2 = createBodyBox("guide_bar2", vec3(1.0f, 9.0f, 0.5f), 15.0f, vec4(0.0f, 0.1f, 0.7f, 1.0f), transform* Mat4(translate(-1.0f, 3.0f, 0.0f)));
wheel = createBodyCylinder("wheel", 3.0f, 0.25f, 25.0f, vec4(0.1f, 0.1f, 0.1f, 1.0f), transform * Mat4(translate(0.0f, -15.0f, -0.5f)));
rod = createBodyCylinder("rod", 0.1f, 15.0f, 5.0f, vec4(0.1f, 1.1f, 0.1f, 1.0f), transform * Mat4(translate(0.0f, -5.0f, 0.0f) * rotateX(90.0f)));
//creating mounting points
dummy1 = createBodyDummy("dummy1", vec3(1.0f, 1.0f, 1.0f), transform * Mat4(translate(0.0f, -15.0f, -1.5f)));
dummy2 = createBodyDummy("dummy2", vec3(1.0f, 1.0f, 0.5f), transform * Mat4(translate(0.0f, 7.0f, 0.0f)));
Adding and Setting Up Joints
Now that we have created all parts of our mechanism with physical bodies and shapes, let us link them together with joints.
First, we are going to attach the wheel to the first mounting point(dummy1). The wheel is going to rotate around its axis. Let us use a cylindrical joint here. As the center of the wheel is aligned with the center of dummy1, we may use a simple constructor JointCylindrical() and specify only bodies, the anchor point will be placed automatically between their centers of mass.
Then we must set the coordinates (in the world space) of the axis of wheel rotation. In our case it is (1.0f, 0.0f, 0.0f). And finally set other joint parameters.
// creating a cylindrical joint
jc = JointCylindrical::create(dummy1->getBody(), wheel->getBody());
// setting rotation axis in world coordinates
jc->setWorldAxis(vec3(1.0f, 0.0f, 0.0f));
// setting common joint constraint parameters
jc->setLinearRestitution(0.4f);
jc->setAngularRestitution(0.4f);
jc->setLinearSoftness(0.4f);
jc->setAngularSoftness(0.4f);
// setting linear and angular damping
jc->setLinearDamping(4.0f);
jc->setAngularDamping(2.0f);
// setting small linear limits as we are not going to use this degree of freedom to the full extent
jc->setLinearLimitFrom(-0.0005f);
jc->setLinearLimitTo(0.0005f);
// setting number of iterations
jc->setNumIterations(16);
Now let us attach the rod to the wheel and to the piston. This is where we need a hinge joint. For both of these joints we have to specify anchor point and joint axis coordinates in the JointHinge() constructor
// creating hinge joints
jh = JointHinge::create(wheel->getBody(), rod->getBody(), Vec3(0.0f, -12.5f, 10.0f), vec3(1.0f, 0.0f, 0.0f));
jh2 = JointHinge::create(rod->getBody(), piston->getBody(), Vec3(0.0f, 2.5f, 10.0f), vec3(1.0f, 0.0f, 0.0f));
// setting number of iterations
jh->setNumIterations(8);
jh2->setNumIterations(8);
The next thing we are going to do is to attach 2 guide bars to the second mounting point(dummy2) using a pair of fixed joints. For both of these joints we will specify anchor point coordinates in the JointFixed() constructor
// creating fixed joints
jf1 = JointFixed::create(dummy2->getBody(), guide_bar1->getBody(), Vec3(0.0f, 7.0f, 9.0f));
jf2 = JointFixed::create(dummy2->getBody(), guide_bar2->getBody(), Vec3(0.0f, 7.0f, 11.0f));
// setting number of iterations
jf1->setNumIterations(1);
jf2->setNumIterations(1);
And the last joint we are going to use is a prismatic joint to attach the piston to the second mounting point(dummy2). Here we will specify joint axis coordinates, linear limits to determine the range of motion for the piston and linear softness
// creating a prismatic joint
jp = JointPrismatic::create(piston->getBody(), dummy2->getBody());
jp->setWorldAxis(vec3(0.0f, 1.0f, 0.0f));
// setting linear limits [-5.0; 0.0] and softness
jp->setLinearLimitFrom(-5.0f);
jp->setLinearLimitTo(0.0f);
jp->setLinearSoftness(0.5f);
// setting number of iterations
jp->setNumIterations(8);
Using Joint Motors
To animate the mechanism we are going to use the motor of our cylindrical joint. In order to make it move we must set angular velocity and torque:
// setting up motor parameters for a cylindrical joint to animate the whole mechanism
jc->setAngularVelocity(1000.0f);
jc->setAngularTorque(150.0f);
Putting it All Together
In this section let us sum up all described above. The final code for our tutorial will be as follows:
In the AppWorldLogic.h file, define smart pointers for the objects of our scene.
// AppWorldLogic.h
#include <UnigineObjects.h>
/* .. */
class AppWorldLogic : public Unigine::WorldLogic {
public:
/* .. */
private:
Unigine::ObjectDummyPtr dummy1;
Unigine::ObjectDummyPtr dummy2;
Unigine::ObjectMeshDynamicPtr rod;
Unigine::ObjectMeshDynamicPtr wheel;
Unigine::ObjectMeshDynamicPtr piston;
Unigine::ObjectMeshDynamicPtr guide_bar1;
Unigine::ObjectMeshDynamicPtr guide_bar2;
};
Insert the following code into the AppWorldLogic.cpp file.
/* .. */
#include "UnigineGame.h"
#include "UnigineEngine.h"
#include "UniginePrimitives.h"
using namespace Unigine;
using namespace Math;
// joints of the mechanism
JointCylindricalPtr jc;
JointHingePtr jh;
JointHingePtr jh2;
JointFixedPtr jf1;
JointFixedPtr jf2;
JointPrismaticPtr jp;
/// function, creating a named dummy body of a specified size at pos
ObjectDummyPtr createBodyDummy(char *name, vec3 size, Mat4 transform)
{
// creating a dummy object
ObjectDummyPtr dummy = ObjectDummy::create();
// setting parameters
dummy->setWorldTransform(transform);
dummy->setName(name);
//assigning a dummy body to the dummy object and adding a box shape to it
BodyDummy::create(dummy->getObject());
dummy->getBody()->addShape(ShapeBox::create(size)->getShape(), translate(0.0f, 0.0f, 0.0f));
return dummy;
}
/// function, creating a named box having a specified size, color and transformation with a body and a shape
ObjectMeshDynamicPtr createBodyBox(char *name, vec3 size, float mass, vec4 color, Mat4 transform)
{
// creating geometry and setting up its parameters (name, material, property and transformation)
ObjectMeshDynamicPtr OMD = Primitives::createBox(size);
OMD->setWorldTransform(transform);
OMD->setMaterial("mesh_base", "*");
OMD->setMaterialParameter("albedo_color", color, 0);
OMD->setProperty("surface_base", "*");
OMD->setName(name);
// adding physics, i.e. a rigid body and a box shape with specified mass
BodyRigidPtr body = BodyRigid::create(OMD->getObject());
body->addShape(ShapeBox::create(size)->getShape(), translate(vec3(0.0f)));
OMD->getBody()->getShape(0)->setMass(mass);
return OMD;
}
/// function, creating a named cylinder having a specified size, color and transformation with a body and a shape
ObjectMeshDynamicPtr createBodyCylinder(char *name, float radius, float height, float mass, vec4 color, Mat4 transform)
{
// creating geometry and setting up its parameters (name, material, property and transformation)
ObjectMeshDynamicPtr OMD = Primitives::createCylinder(radius, height, 1, 32);
OMD->setWorldTransform(transform);
OMD->setMaterial("mesh_base", "*");
OMD->setMaterialParameter("albedo_color", color, 0);
OMD->setProperty("surface_base", "*");
OMD->setName(name);
// adding physics, i.e. a rigid body and a cylinder shape with specified mass
BodyRigidPtr body = BodyRigid::create(OMD->getObject());
body->addShape(ShapeCylinder::create(radius, height)->getShape(), translate(vec3(0.0f)));
OMD->getBody()->getShape(0)->setMass(mass);
return OMD;
}
/* .. */
int AppWorldLogic::init() {
// setting up physics parameters
Physics::get()->setGravity(vec3(0.0f, 0.0f, -9.8f * 2.0f));
Physics::get()->setFrozenLinearVelocity(0.1f);
Physics::get()->setFrozenAngularVelocity(0.1f);
// setting up player
PlayerSpectatorPtr player = PlayerSpectator::create();
player->release();
player->setPosition(Vec3(22.0f, -2.0f, 10.0f));
player->setDirection(vec3(-10.0f, -2.0f, 0.0f), vec3(0.0f, 0.0f, -1.0f));
Game::get()->setPlayer(player->getPlayer());
// creating parts of the mechanism
Mat4 transform = Mat4(translate(0.0f, 0.0f, 10.0f)*rotateY(90.0f));
piston = createBodyBox("piston", vec3(1.0f, 2.0f, 0.5f), 15.0f, vec4(1.0f, 0.1f, 0.1f, 1.0f), transform * Mat4(translate(0.0f, 3.5f, 0.0f)));
guide_bar1 = createBodyBox("guide_bar1", vec3(1.0f, 9.0f, 0.5f), 15.0f, vec4(0.0f, 0.1f, 0.7f, 1.0f), transform* Mat4(translate(1.0f, 3.0f, 0.0f)));
guide_bar2 = createBodyBox("guide_bar2", vec3(1.0f, 9.0f, 0.5f), 15.0f, vec4(0.0f, 0.1f, 0.7f, 1.0f), transform* Mat4(translate(-1.0f, 3.0f, 0.0f)));
wheel = createBodyCylinder("wheel", 3.0f, 0.25f, 25.0f, vec4(0.1f, 0.1f, 0.1f, 1.0f), transform * Mat4(translate(0.0f, -15.0f, -0.5f)));
rod = createBodyCylinder("rod", 0.1f, 15.0f, 5.0f, vec4(0.1f, 1.1f, 0.1f, 1.0f), transform * Mat4(translate(0.0f, -5.0f, 0.0f) * rotateX(90.0f)));
//creating mounting points
dummy1 = createBodyDummy("dummy1", vec3(1.0f, 1.0f, 1.0f), transform * Mat4(translate(0.0f, -15.0f, -1.5f)));
dummy2 = createBodyDummy("dummy2", vec3(1.0f, 1.0f, 0.5f), transform * Mat4(translate(0.0f, 7.0f, 0.0f)));
// creating hinge joints
jh = JointHinge::create(wheel->getBody(), rod->getBody(), Vec3(0.0f, -12.5f, 10.0f), vec3(1.0f, 0.0f, 0.0f));
jh2 = JointHinge::create(rod->getBody(), piston->getBody(), Vec3(0.0f, 2.5f, 10.0f), vec3(1.0f, 0.0f, 0.0f));
// setting number of iterations
jh->setNumIterations(8);
jh2->setNumIterations(8);
// creating fixed joints
jf1 = JointFixed::create(dummy2->getBody(), guide_bar1->getBody(), Vec3(0.0f, 7.0f, 9.0f));
jf2 = JointFixed::create(dummy2->getBody(), guide_bar2->getBody(), Vec3(0.0f, 7.0f, 11.0f));
// setting number of iterations
jf1->setNumIterations(1);
jf2->setNumIterations(1);
// creating a prismatic joint
jp = JointPrismatic::create(piston->getBody(), dummy2->getBody());
jp->setWorldAxis(vec3(0.0f, 1.0f, 0.0f));
// setting linear limits [-5.0; 0.0] and softness
jp->setLinearLimitFrom(-5.0f);
jp->setLinearLimitTo(0.0f);
jp->setLinearSoftness(0.5f);
// setting number of iterations
jp->setNumIterations(8);
// creating a cylindrical joint
jc = JointCylindrical::create(dummy1->getBody(), wheel->getBody());
// setting rotation axis in world coordinates
jc->setWorldAxis(vec3(1.0f, 0.0f, 0.0f));
// setting common joint constraint parameters
jc->setLinearRestitution(0.4f);
jc->setAngularRestitution(0.4f);
jc->setLinearSoftness(0.4f);
jc->setAngularSoftness(0.4f);
// setting linear and angular damping
jc->setLinearDamping(4.0f);
jc->setAngularDamping(2.0f);
// setting small linear limits as we are not going to use this degree of freedom to the full extent
jc->setLinearLimitFrom(-0.0005f);
jc->setLinearLimitTo(0.0005f);
// setting number of iterations
jc->setNumIterations(16);
// setting up motor parameters for a cylindrical joint to animate the whole mechanism
jc->setAngularVelocity(1000.0f);
jc->setAngularTorque(150.0f);
return 1;
}
/* .. */