This page has been translated automatically.
Programming
Fundamentals
Setting Up Development Environment
UnigineScript
High-Level Systems
C++
C#
UUSL (Unified UNIGINE Shader Language)
File Formats
Rebuilding the Engine and Tools
GUI
Double Precision Coordinates
API
Containers
Common Functionality
Controls-Related Classes
Engine-Related Classes
Filesystem Functionality
GUI-Related Classes
Math Functionality
Node-Related Classes
Networking Functionality
Pathfinding-Related Classes
Plugins-Related Classes
Rendering-Related Classes
Warning! This version of documentation is OUTDATED, as it describes an older SDK version! Please switch to the documentation for the latest SDK version.
Warning! This version of documentation describes an old SDK version which is no longer supported! Please upgrade to the latest SDK version.

JointHinge Class

Inherits:Joint

This class is used to create hinge joints.

JointHinge Class

Members


static JointHinge()

Constructor. Creates a hinge joint with an anchor at the origin of the world coordinates.

static JointHinge(Body body0, Body body1)

Constructor. Creates a hinge joint connecting two given bodies. An anchor is placed between centers of mass of the bodies.

Arguments

  • Body body0 - The first body to connect with the joint.
  • Body body1 - The second body to connect with the joint.

static JointHinge(Body body0, Body body1, Vec3 anchor, vec3 axis)

Arguments

  • Body body0
  • Body body1
  • Vec3 anchor
  • vec3 axis

JointHinge cast(Joint joint)

Arguments

  • Joint joint

void setAngularAngle(float angle)

Sets a target angle of the attached angular spring. The spring tries to rotate the connected bodies so that they make this angle.

Arguments

  • float angle - Angle in degrees. The provided value will be saturated in the range [-180; 180].

float getAngularAngle()

Returns the target angle of the attached angular spring. The spring tries to rotate the connected bodies so that they make this angle.

Return value

Target angle in degrees.

void setAngularDamping(float damping)

Sets an angular damping of the joint.

Arguments

  • float damping - Angular damping. If a negative value is provided, 0 will be used instead.

float getAngularDamping()

Returns the angular damping of the joint.

Return value

Angular damping.

void setAngularLimitFrom(float from)

Sets a low rotation limit angle. Rotation limit specifies how much a connected body can rotate around the joint axis.

Arguments

  • float from - Angle in degrees. The provided value will be saturated in the range [-180; 180].

float getAngularLimitFrom()

Returns the low rotation limit angle. Rotation limit specifies how much a connected body can rotate around the joint axis.

Return value

Low rotation limit angle in degrees.

void setAngularLimitTo(float to)

Sets a high rotation limit angle. Rotation limit specifies how much a connected body can rotate around the joint axis.

Arguments

  • float to - Angle in degrees. The provided value will be saturated in the range [-180; 180].

float getAngularLimitTo()

Returns the high rotation limit angle. Rotation limit specifies how much a connected body can rotate around the joint axis.

Return value

High rotation limit angle in degrees.

void setAngularSpring(float spring)

Sets a rigidity coefficient of the angular spring.

Arguments

  • float spring - Rigidity coefficient. If a negative value is provided, 0 will be used instead. 0 detaches the spring.

float getAngularSpring()

Returns the rigidity coefficient of the angular spring. 0 means that the spring is not attached.

Return value

Rigidity coefficient.

void setAngularTorque(float torque)

Sets a maximum torque of the angular motor.

Arguments

  • float torque - Maximum torque. If a negative value is provided, 0 will be used instead. 0 detaches the motor.

float getAngularTorque()

Returns the maximum torque of the attached angular motor. 0 means that the motor is not attached.

Return value

Maximum torque.

void setAngularVelocity(float velocity)

Sets a target velocity of the attached angular motor.

Arguments

  • float velocity - Velocity in radians per second.

float getAngularVelocity()

Returns the target velocity of the attached angular motor.

Return value

Target velocity in radians per second.

void setAxis0(vec3 axis0)

Sets an axis of the first connected body.

Arguments

  • vec3 axis0 - Axis of the first body. The provided vector will be normalized.

vec3 getAxis0()

Returns the axis of the first connected body.

Return value

Axis of the first body.

void setAxis1(vec3 axis1)

Sets an axis of the second connected body.

Arguments

  • vec3 axis1 - Axis of the second body. The provided vector will be normalized.

vec3 getAxis1()

Returns the axis of the second connected body.

Return value

Axis of the second body.

float getCurrentAngularAngle()

Returns the current angle between the bodies.

Return value

Current angle in degrees.

float getCurrentAngularVelocity()

Returns the current velocity of the motor, i.e. the difference between angular velocities of two bodies connected with a hinge relative the hinge axis.
Notice
This function returns the valid velocity only if both bodies are of BodyRigid type. Otherwise, 0 is returned.

Return value

Current motor velocity in radians per second.

void setWorldAxis(vec3 axis)

Sets a joint axis. This method updates axes of the connected bodies.

Arguments

  • vec3 axis - Joint axis.

vec3 getWorldAxis()

Returns the joint axis. The joint axis is calculated based on the axes of the connected bodies.

Return value

Joint axis.
Last update: 2017-07-03
Build: ()