This page has been translated automatically.
Programming
Fundamentals
Setting Up Development Environment
UnigineScript
High-Level Systems
C++
C#
UUSL (Unified UNIGINE Shader Language)
File Formats
Rebuilding the Engine and Tools
GUI
Double Precision Coordinates
API
Containers
Common Functionality
Controls-Related Classes
Engine-Related Classes
Filesystem Functionality
GUI-Related Classes
Math Functionality
Node-Related Classes
Networking Functionality
Pathfinding-Related Classes
Physics-Related Classes
Plugins-Related Classes
Rendering-Related Classes
Warning! This version of documentation is OUTDATED, as it describes an older SDK version! Please switch to the documentation for the latest SDK version.
Warning! This version of documentation describes an old SDK version which is no longer supported! Please upgrade to the latest SDK version.

LightOmni Class

Inherits:Light

This class is used to create omni directional light sources. It is possible to modulate the light from omni light sources with a texture.

LightOmni Class

Members


static LightOmni(vec4 color, float attenuation_distance, string name = 0)

Arguments

  • vec4 color
  • float attenuation_distance
  • string name

LightOmni cast(Node node)

Casts a LightOmni out of the Node instance.

Arguments

  • Node node - Node instance.

Return value

LightOmni instance.

LightOmni cast(Light base)

Casts a LightOmni out of the Light instance.

Arguments

  • Light base - Light instance.

Return value

LightOmni instance.

void setAttenuationDistance(float distance)

Updates the distance from the light source shape, at which the light source doesn't illuminate anything.

Arguments

  • float distance - Distance from the light source shape, at which the light source doesn't illuminate anything.

float getAttenuationDistance()

Returns the distance from the light source shape, at which the light source doesn't illuminate anything.

Return value

Distance from the light source shape, at which the light source doesn't illuminate anything.

void setImageTexture(Texture texture)

Sets the light image texture smart pointer.

Arguments

  • Texture texture - Texture smart pointer.

Texture getImageTexture()

Gets a light image texture smart pointer.

Return value

Returns image texture smart pointer.

int setImageTextureImage(Image image, int dynamic = 0)

Sets a given Image instance as the light image texture. If you need to set a texture of all the lights in the scene, set dynamic flag to 1.

Arguments

  • Image image - New texture to set.
  • int dynamic - Dynamic texture flag.
    • If set to 0, changing a texture of the light instance will also affect all the lights in the scene.
    • If set to 1, an image will be successfully set only for the current light instance.

Return value

Returns 1 if the texture is set successfully; otherwise, 0.

int getImageTextureImage(Image image)

Reads the light image texture into an Image instance.

Arguments

  • Image image - Image, into which the texture is read.

Return value

Returns 1 if the texture is read successfully; otherwise, 0.

void setImageTextureName(string name)

Updates the cube map texture used with this light source.

Arguments

  • string name - Name (path) of the new cube map texture.

string getImageTextureName()

Returns the name (path) of the cubemap texture used with this light source.

Return value

Name of the cubemap texture.

void setShadowMask(int mask)

Updates the shadow mask for the omni light source. The bit mask defines shadowing of six cube map sides in the following way: positive and negative X-axis, positive and negative Y-axis, and positive and negative Z-axis. By default, no mask is applied.

Arguments

  • int mask - Integer, each bit of which is used to set a mask.

int getShadowMask()

Returns the current shadow mask set for the omni light source. The bit mask defines shadowing of six cube map sides in the following way: positive and negative X-axis, positive and negative Y-axis, and positive and negative Z-axis.

Return value

Integer, each bit of which is used to set a mask.

void setShapeHeight(float height)

Updates the height of the rectangular light source.

Arguments

  • float height - Height of the light source shape.

float getShapeHeight()

Returns the height of the rectangular light source.

Return value

Height of the light source shape.

void setShapeLength(float length)

Updates the length of the capsule-shaped or rectangular light source.

Arguments

  • float length - Length of the light source shape.

float getShapeLength()

Returns a length of the capsule-shaped or rectangular light source.

Return value

Length of the light source shape.

void setShapeRadius(float radius)

Updates the radius of the spherical, capsule-shaped or rectangular light source.
Notice
In case of the rectangular shape, the corner radius is set.

Arguments

  • float radius - Radius of the light source shape.

float getShapeRadius()

Returns a radius of the spherical, capsule-shaped or rectangular light source.
Notice
In case of the rectangular shape, the corner radius will be returned.

Return value

Radius of the light source shape.

void setShapeType(int type)

Updates the shape of the light source.
Notice
A light source of the rectangular shape produces the light and the speck in a form of a rounded rectangle.

Arguments

  • int type - Shape of the light source (one of the LIGHT_SHAPE_* variables).

int getShapeType()

Returns the shape of the light source.
Notice
A light source of the rectangular shape produces the light and the speck in a form of a rounded rectangle.

Return value

Shape of the light source (one of the LIGHT_SHAPE_* variables).

vec3 getSize()

Returns the size of the area illuminated by the light source. Depending on the shape type, the size varies:
  • If the light is point-shaped, each component of the vector will be equal to the attenuation distance:
    Source code (UnigineScript)
    vec3(attenuation_distance)
  • If the light is spherical, each component of the vector will be equal to the attenuation distance+sphere radius:
    Source code (UnigineScript)
    vec3(attenuation_distance + sphere_radius)
  • If the light is capsule-shaped, the 1st component of the vector will be equal to attenuation distance+capsule length:
    Source code (UnigineScript)
    vec3(attenuation_distance + capsule_length,attenuation_distance,attenuation_distance)
  • If the light is rectangular, the 2nd component of the vector will be equal to attenuation distance+rectangle height:
    Source code (UnigineScript)
    vec3(attenuation_distance,attenuation_distance + rectangle_height,attenuation_distance)

Return value

A size of the illuminated area.

int type()

Last update: 2017-07-03
Build: ()