Unigine.vec2 Struct
vec2 Class
Properties
Vector2 vec#
The
float x#
The X component of the vector.Swizzle simplifying access to the corresponding vector components (in the specified order).
float y#
The Y component of the vector.Swizzle simplifying access to the corresponding vector components (in the specified order).
float Length#
The Length of the vector.
float Minimum#
The Minimum value among all components.
float Maximum#
The Maximum value among all components.
float Length2#
The Squared length of the vector. This method is much faster than length() — the calculation is basically the same only without the slow Sqrt call. If you are using lengths simply to compare distances, then it is faster to compare squared lengths against the squares of distances as the comparison gives the same result.
float ILength#
The Inverted length of the vector.
float Sum#
The Sum of vector components.
vec2 Absolute#
The Returns the absolute value of an argument.
vec2 Clamped#
The Returns the value clamped within the range of [0.0,1.0].
vec2 Normalized#
The Returns a vector with the same direction as the specified vector, but with a length of one.
vec2 Frac#
The Returns a vector containing fractional parts of the corresponding vector components.
vec2 Floor#
The Returns a vector containing the largest integral values each being less than or equal to the corresponding vector component.
vec2 Ceil#
The Returns a vector containing the smallest integral values each being greater than or equal to the corresponding vector component.
vec2 ZERO#
The Vector, filled with zeros (0).
vec2 ONE#
The Vector, filled with ones (1).
vec2 NEG_ONE#
The Vector, filled with minus ones (-1).
vec2 HALF#
The Vector, filled with 0.5 values.
vec2 EPS#
The Vector, filled with the epsilon constant (1e-6f).
vec2 INF#
The Vector, filled with the infinity constant (1e+9f).
byte NUM_ELEMENTS#
The Number of elements in the vector.
vec2 xx#
The Swizzle simplifying access to the corresponding vector components (in the specified order).
vec2 xy#
The Swizzle simplifying access to the corresponding vector components (in the specified order).
vec2 yx#
The Swizzle simplifying access to the corresponding vector components (in the specified order).
vec2 yy#
The Swizzle simplifying access to the corresponding vector components (in the specified order).
vec3 xxx#
The Swizzle simplifying access to the corresponding vector components (in the specified order).
vec3 xxy#
The Swizzle simplifying access to the corresponding vector components (in the specified order).
vec3 xyx#
The Swizzle simplifying access to the corresponding vector components (in the specified order).
vec3 xyy#
The Swizzle simplifying access to the corresponding vector components (in the specified order).
vec3 yxx#
The Swizzle simplifying access to the corresponding vector components (in the specified order).
vec3 yxy#
The Swizzle simplifying access to the corresponding vector components (in the specified order).
vec3 yyx#
The Swizzle simplifying access to the corresponding vector components (in the specified order).
vec3 yyy#
The Swizzle simplifying access to the corresponding vector components (in the specified order).
vec4 xxxx#
The Swizzle simplifying access to the corresponding vector components (in the specified order).
vec4 xxxy#
The Swizzle simplifying access to the corresponding vector components (in the specified order).
vec4 xxyx#
The Swizzle simplifying access to the corresponding vector components (in the specified order).
vec4 xxyy#
The Swizzle simplifying access to the corresponding vector components (in the specified order).
vec4 xyxx#
The Swizzle simplifying access to the corresponding vector components (in the specified order).
vec4 xyxy#
The Swizzle simplifying access to the corresponding vector components (in the specified order).
vec4 xyyx#
The Swizzle simplifying access to the corresponding vector components (in the specified order).
vec4 xyyy#
The Swizzle simplifying access to the corresponding vector components (in the specified order).
vec4 yxxx#
The Swizzle simplifying access to the corresponding vector components (in the specified order).
vec4 yxxy#
The Swizzle simplifying access to the corresponding vector components (in the specified order).
vec4 yxyx#
The Swizzle simplifying access to the corresponding vector components (in the specified order).
vec4 yxyy#
The Swizzle simplifying access to the corresponding vector components (in the specified order).
vec4 yyxx#
The Swizzle simplifying access to the corresponding vector components (in the specified order).
vec4 yyxy#
The Swizzle simplifying access to the corresponding vector components (in the specified order).
vec4 yyyx#
The Swizzle simplifying access to the corresponding vector components (in the specified order).
vec4 yyyy#
The Swizzle simplifying access to the corresponding vector components (in the specified order).
float r#
The Swizzle simplifying access to the corresponding vector components (in the specified order).
float g#
The Swizzle simplifying access to the corresponding vector components (in the specified order).
vec2 rr#
The Swizzle simplifying access to the corresponding vector components (in the specified order).
vec2 rg#
The Swizzle simplifying access to the corresponding vector components (in the specified order).
vec2 gr#
The Swizzle simplifying access to the corresponding vector components (in the specified order).
vec2 gg#
The Swizzle simplifying access to the corresponding vector components (in the specified order).
vec3 rrr#
The Swizzle simplifying access to the corresponding vector components (in the specified order).
vec3 rrg#
The Swizzle simplifying access to the corresponding vector components (in the specified order).
vec3 rgr#
The Swizzle simplifying access to the corresponding vector components (in the specified order).
vec3 rgg#
The Swizzle simplifying access to the corresponding vector components (in the specified order).
vec3 grr#
The Swizzle simplifying access to the corresponding vector components (in the specified order).
vec3 grg#
The Swizzle simplifying access to the corresponding vector components (in the specified order).
vec3 ggr#
The Swizzle simplifying access to the corresponding vector components (in the specified order).
vec3 ggg#
The Swizzle simplifying access to the corresponding vector components (in the specified order).
vec4 rrrr#
The Swizzle simplifying access to the corresponding vector components (in the specified order).
vec4 rrrg#
The Swizzle simplifying access to the corresponding vector components (in the specified order).
vec4 rrgr#
The Swizzle simplifying access to the corresponding vector components (in the specified order).
vec4 rrgg#
The Swizzle simplifying access to the corresponding vector components (in the specified order).
vec4 rgrr#
The Swizzle simplifying access to the corresponding vector components (in the specified order).
vec4 rgrg#
The Swizzle simplifying access to the corresponding vector components (in the specified order).
vec4 rggr#
The Swizzle simplifying access to the corresponding vector components (in the specified order).
vec4 rggg#
The Swizzle simplifying access to the corresponding vector components (in the specified order).
vec4 grrr#
The Swizzle simplifying access to the corresponding vector components (in the specified order).
vec4 grrg#
The Swizzle simplifying access to the corresponding vector components (in the specified order).
vec4 grgr#
The Swizzle simplifying access to the corresponding vector components (in the specified order).
vec4 grgg#
The Swizzle simplifying access to the corresponding vector components (in the specified order).
vec4 ggrr#
The Swizzle simplifying access to the corresponding vector components (in the specified order).
vec4 ggrg#
The Swizzle simplifying access to the corresponding vector components (in the specified order).
vec4 gggr#
The Swizzle simplifying access to the corresponding vector components (in the specified order).
vec4 gggg#
The Swizzle simplifying access to the corresponding vector components (in the specified order).
Members
vec2 operator* ( vec2 v0, vec2 v1 ) #
Multiplication.Arguments
vec2 operator* ( vec2 v0, vec3 v1 ) #
Multiplication.Arguments
vec2 operator* ( vec2 v0, vec4 v1 ) #
Multiplication.Arguments
vec2 operator* ( vec2 v0, float v1 ) #
Multiplication.Arguments
- vec2 v0 - First value.
- float v1 - Second value.
vec2 operator* ( float v0, vec2 v1 ) #
Multiplication.Arguments
- float v0 - First value.
- vec2 v1 - Second value.
dvec2 operator* ( vec2 v0, dvec2 v1 ) #
Multiplication.Arguments
dvec2 operator* ( vec2 v0, dvec3 v1 ) #
Multiplication.Arguments
dvec2 operator* ( vec2 v0, dvec4 v1 ) #
Multiplication.Arguments
dvec2 operator* ( vec2 v0, double v1 ) #
Multiplication.Arguments
- vec2 v0 - First value.
- double v1 - Second value.
dvec2 operator* ( double v0, vec2 v1 ) #
Multiplication.Arguments
- double v0 - First value.
- vec2 v1 - Second value.
vec2 operator* ( vec2 v0, ivec2 v1 ) #
Multiplication.Arguments
vec2 operator* ( vec2 v0, ivec3 v1 ) #
Multiplication.Arguments
vec2 operator* ( vec2 v0, ivec4 v1 ) #
Multiplication.Arguments
vec2 operator* ( vec2 v0, int v1 ) #
Multiplication.Arguments
- vec2 v0 - First value.
- int v1 - Second value.
vec2 operator* ( int v0, vec2 v1 ) #
Multiplication.Arguments
- int v0 - First value.
- vec2 v1 - Second value.
vec2 operator/ ( vec2 v0, vec2 v1 ) #
Division.Arguments
vec2 operator/ ( vec2 v0, vec3 v1 ) #
Division.Arguments
vec2 operator/ ( vec2 v0, vec4 v1 ) #
Division.Arguments
vec2 operator/ ( vec2 v0, float v1 ) #
Division.Arguments
- vec2 v0 - First value.
- float v1 - Second value.
vec2 operator/ ( float v0, vec2 v1 ) #
Division.Arguments
- float v0 - First value.
- vec2 v1 - Second value.
dvec2 operator/ ( vec2 v0, dvec2 v1 ) #
Division.Arguments
dvec2 operator/ ( vec2 v0, dvec3 v1 ) #
Division.Arguments
dvec2 operator/ ( vec2 v0, dvec4 v1 ) #
Division.Arguments
dvec2 operator/ ( vec2 v0, double v1 ) #
Division.Arguments
- vec2 v0 - First value.
- double v1 - Second value.
dvec2 operator/ ( double v0, vec2 v1 ) #
Division.Arguments
- double v0 - First value.
- vec2 v1 - Second value.
vec2 operator/ ( vec2 v0, ivec2 v1 ) #
Division.Arguments
vec2 operator/ ( vec2 v0, ivec3 v1 ) #
Division.Arguments
vec2 operator/ ( vec2 v0, ivec4 v1 ) #
Division.Arguments
vec2 operator/ ( vec2 v0, int v1 ) #
Division.Arguments
- vec2 v0 - First value.
- int v1 - Second value.
vec2 operator/ ( int v0, vec2 v1 ) #
Division.Arguments
- int v0 - First value.
- vec2 v1 - Second value.
vec2 operator- ( vec2 v0, vec2 v1 ) #
Subtraction.Arguments
vec2 operator- ( vec2 v0, vec3 v1 ) #
Subtraction.Arguments
vec2 operator- ( vec2 v0, vec4 v1 ) #
Subtraction.Arguments
vec2 operator- ( vec2 v0, float v1 ) #
Subtraction.Arguments
- vec2 v0 - First value.
- float v1 - Second value.
vec2 operator- ( float v0, vec2 v1 ) #
Subtraction.Arguments
- float v0 - First value.
- vec2 v1 - Second value.
dvec2 operator- ( vec2 v0, dvec2 v1 ) #
Subtraction.Arguments
dvec2 operator- ( vec2 v0, dvec3 v1 ) #
Subtraction.Arguments
dvec2 operator- ( vec2 v0, dvec4 v1 ) #
Subtraction.Arguments
dvec2 operator- ( vec2 v0, double v1 ) #
Subtraction.Arguments
- vec2 v0 - First value.
- double v1 - Second value.
dvec2 operator- ( double v0, vec2 v1 ) #
Subtraction.Arguments
- double v0 - First value.
- vec2 v1 - Second value.
vec2 operator- ( vec2 v0, ivec2 v1 ) #
Subtraction.Arguments
vec2 operator- ( vec2 v0, ivec3 v1 ) #
Subtraction.Arguments
vec2 operator- ( vec2 v0, ivec4 v1 ) #
Subtraction.Arguments
vec2 operator- ( vec2 v0, int v1 ) #
Subtraction.Arguments
- vec2 v0 - First value.
- int v1 - Second value.
vec2 operator- ( int v0, vec2 v1 ) #
Subtraction.Arguments
- int v0 - First value.
- vec2 v1 - Second value.
vec2 operator+ ( vec2 v0, vec2 v1 ) #
Addition.Arguments
vec2 operator+ ( vec2 v0, vec3 v1 ) #
Addition.Arguments
vec2 operator+ ( vec2 v0, vec4 v1 ) #
Addition.Arguments
vec2 operator+ ( vec2 v0, float v1 ) #
Addition.Arguments
- vec2 v0 - First value.
- float v1 - Second value.
vec2 operator+ ( float v0, vec2 v1 ) #
Addition.Arguments
- float v0 - First value.
- vec2 v1 - Second value.
dvec2 operator+ ( vec2 v0, dvec2 v1 ) #
Addition.Arguments
dvec2 operator+ ( vec2 v0, dvec3 v1 ) #
Addition.Arguments
dvec2 operator+ ( vec2 v0, dvec4 v1 ) #
Addition.Arguments
dvec2 operator+ ( vec2 v0, double v1 ) #
Addition.Arguments
- vec2 v0 - First value.
- double v1 - Second value.
dvec2 operator+ ( double v0, vec2 v1 ) #
Addition.Arguments
- double v0 - First value.
- vec2 v1 - Second value.
vec2 operator+ ( vec2 v0, ivec2 v1 ) #
Addition.Arguments
vec2 operator+ ( vec2 v0, ivec3 v1 ) #
Addition.Arguments
vec2 operator+ ( vec2 v0, ivec4 v1 ) #
Addition.Arguments
vec2 operator+ ( vec2 v0, int v1 ) #
Addition.Arguments
- vec2 v0 - First value.
- int v1 - Second value.
vec2 operator+ ( int v0, vec2 v1 ) #
Addition.Arguments
- int v0 - First value.
- vec2 v1 - Second value.
vec2 operator% ( vec2 v0, vec2 v1 ) #
Modulo, gives the remainder of a division of two specified values.Arguments
vec2 operator% ( vec2 v0, vec3 v1 ) #
Modulo, gives the remainder of a division of two specified values.Arguments
vec2 operator% ( vec2 v0, vec4 v1 ) #
Modulo, gives the remainder of a division of two specified values.Arguments
vec2 operator% ( vec2 v0, float v1 ) #
Modulo, gives the remainder of a division of two specified values.Arguments
- vec2 v0 - First value.
- float v1 - Second value.
vec2 operator% ( float v0, vec2 v1 ) #
Modulo, gives the remainder of a division of two specified values.Arguments
- float v0 - First value.
- vec2 v1 - Second value.
dvec2 operator% ( vec2 v0, dvec2 v1 ) #
Modulo, gives the remainder of a division of two specified values.Arguments
dvec2 operator% ( vec2 v0, dvec3 v1 ) #
Modulo, gives the remainder of a division of two specified values.Arguments
dvec2 operator% ( vec2 v0, dvec4 v1 ) #
Modulo, gives the remainder of a division of two specified values.Arguments
dvec2 operator% ( vec2 v0, double v1 ) #
Modulo, gives the remainder of a division of two specified values.Arguments
- vec2 v0 - First value.
- double v1 - Second value.
dvec2 operator% ( double v0, vec2 v1 ) #
Modulo, gives the remainder of a division of two specified values.Arguments
- double v0 - First value.
- vec2 v1 - Second value.
vec2 operator% ( vec2 v0, ivec2 v1 ) #
Modulo, gives the remainder of a division of two specified values.Arguments
vec2 operator% ( vec2 v0, ivec3 v1 ) #
Modulo, gives the remainder of a division of two specified values.Arguments
vec2 operator% ( vec2 v0, ivec4 v1 ) #
Modulo, gives the remainder of a division of two specified values.Arguments
vec2 operator% ( vec2 v0, int v1 ) #
Modulo, gives the remainder of a division of two specified values.Arguments
- vec2 v0 - First value.
- int v1 - Second value.
vec2 operator% ( int v0, vec2 v1 ) #
Modulo, gives the remainder of a division of two specified values.Arguments
- int v0 - First value.
- vec2 v1 - Second value.
vec2 operator- ( vec2 v ) #
Subtraction.Arguments
- vec2 v - Value.
vec2 operator+ ( vec2 v ) #
Addition.Arguments
- vec2 v - Value.
vec2 operator++ ( vec2 v ) #
Increment.Arguments
- vec2 v - Value.
vec2 operator-- ( vec2 v ) #
Decrement.Arguments
- vec2 v - Value.
bool operator== ( vec2 v0, vec2 v1 ) #
Performs equal comparison.Arguments
bool operator!= ( vec2 v0, vec2 v1 ) #
Not equal comparison.Arguments
bool operator> ( vec2 v0, vec2 v1 ) #
Greater comparison.Arguments
bool operator< ( vec2 v0, vec2 v1 ) #
Greater comparison.Arguments
bool operator>= ( vec2 v0, vec2 v1 ) #
Greater than or equal to comparison.Arguments
bool operator<= ( vec2 v0, vec2 v1 ) #
Less than or equal to comparison.Arguments
bool operatortrue ( vec2 v ) #
Returns true if the operand is both, not null and not NaN.Arguments
- vec2 v - Value.
bool operatorfalse ( vec2 v ) #
Returns true if the operand is both, null and NaN.Arguments
- vec2 v - Value.
void Set ( float vx, float vy ) #
Sets the value using the specified argument(s).Arguments
- float vx - New float value to be set for the first component.
- float vy - New float value to be set for the second component.
void Set ( float v ) #
Sets the value using the specified argument(s).Arguments
- float v - A float value to be used.
void Set ( float[] v ) #
Sets the value using the specified argument(s).Arguments
- float[] v - Source vector.
void Set ( vec2 v ) #
Sets the value using the specified argument(s).Arguments
- vec2 v - Source vector.
void Set ( vec3 v ) #
Sets the value using the specified argument(s).Arguments
- vec3 v - Source vector.
void Set ( vec4 v ) #
Sets the value using the specified argument(s).Arguments
- vec4 v - Source vector.
void Set ( Vector2 v ) #
Sets the value using the specified argument(s).Arguments
- Vector2 v - Source vector.
void Set ( double vx, double vy ) #
Sets the value using the specified argument(s).Arguments
- double vx - New double value to be set for the first component.
- double vy - New double value to be set for the second component.
void Set ( double v ) #
Sets the value using the specified argument(s).Arguments
- double v - A double value to be used.
void Set ( double[] v ) #
Sets the value using the specified argument(s).Arguments
- double[] v - Source vector.
void Set ( dvec2 v ) #
Sets the value using the specified argument(s).Arguments
- dvec2 v - Source vector.
void Set ( dvec3 v ) #
Sets the value using the specified argument(s).Arguments
- dvec3 v - Source vector.
void Set ( dvec4 v ) #
Sets the value using the specified argument(s).Arguments
- dvec4 v - Source vector.
void Set ( int vx, int vy ) #
Sets the value using the specified argument(s).Arguments
- int vx - New int value to be set for the first component.
- int vy - New int value to be set for the second component.
void Set ( int v ) #
Sets the value using the specified argument(s).Arguments
- int v - A int value to be used.
void Set ( int[] v ) #
Sets the value using the specified argument(s).Arguments
- int[] v - Source vector.
void Set ( ivec2 v ) #
Sets the value using the specified argument(s).Arguments
- ivec2 v - Source vector.
void Set ( ivec3 v ) #
Sets the value using the specified argument(s).Arguments
- ivec3 v - Source vector.
void Set ( ivec4 v ) #
Sets the value using the specified argument(s).Arguments
- ivec4 v - Source vector.
void Set ( byte vx, byte vy ) #
Sets the value using the specified argument(s).Arguments
- byte vx - New byte value to be set for the first component.
- byte vy - New byte value to be set for the second component.
void Set ( byte v ) #
Sets the value using the specified argument(s).Arguments
- byte v - A byte value to be used.
void Set ( byte[] v ) #
Sets the value using the specified argument(s).Arguments
- byte[] v - Source vector.
void Set ( bvec4 v ) #
Sets the value using the specified argument(s).Arguments
- bvec4 v - Source vector.
void Clear ( ) #
Clears the value by setting all components/elements to 0.void Add ( vec2 v ) #
Performs addition of the specified argument.Arguments
- vec2 v - Value.
void Add ( float v ) #
Performs addition of the specified argument.Arguments
- float v - Value.
void Sub ( vec2 v ) #
Subtracts each element of the specified argument from ther corresponding element.Arguments
- vec2 v - Value.
void Sub ( float v ) #
Subtracts each element of the specified argument from ther corresponding element.Arguments
- float v - Value.
void Mul ( vec2 v ) #
Multiplies the vector by the value of the specified argument.Arguments
- vec2 v - Vector multiplier.
void Mul ( float v ) #
Multiplies the vector by the value of the specified argument.Arguments
- float v - A float multiplier.
void Div ( vec2 v ) #
Returns the result of division of the vector by the value of the specified arguments.Arguments
- vec2 v - A vec2 divisor value.
void Div ( float v ) #
Returns the result of division of the vector by the value of the specified arguments.Arguments
- float v - A float divisor value.
void Normalize ( ) #
Returns a vector with the same direction, but with a length of 1.bool Equals ( vec2 other ) #
Checks if the vector and the specified argument are equal (epsilon).Arguments
- vec2 other - Value to be checked for equality.
Return value
Return value.bool EqualsNearly ( vec2 other, float epsilon ) #
Checks if the argument represents the same value with regard to the specified accuracy (epsilon).Arguments
- vec2 other - Value to be checked for equality.
- float epsilon - Epsilon value, that determines accuracy of comparison.
Return value
Return value.bool Equals ( object obj ) #
Checks if the vector and the specified argument are equal (epsilon).Arguments
- object obj
Return value
Return value.int GetHashCode ( ) #
Returns a hash code for the current object. Serves as the default hash function.Return value
Resulting int value.string ToString ( ) #
Converts the current value to a string value.Return value
Resulting string value.string ToString ( string format ) #
Converts the current value to a string value.Arguments
- string format - String formatting to be used. A format string is composed of zero or more ordinary characters (excluding %) that are copied directly to the result string and control sequences, each of which results in fetching its own parameter. Each control sequence consists of a percent sign (%) followed by one or more of these elements, in order:
- An optional number, a width specifier, that says how many characters (minimum) this conversion should result in.
- An optional precision specifier that says how many decimal digits should be displayed for floating-point numbers.
- A type specifier that says what type the argument data should be treated as. Possible types:
- c: the argument is treated as an integer and presented as a character with that ASCII value.
- d or i: the argument is treated as an integer and presented as a (signed) decimal number.
- o: the argument is treated as an integer and presented as an octal number.
- u: the argument is treated as an integer and presented as an unsigned decimal number.
- x: the argument is treated as an integer and presented as a hexadecimal number (with lower-case letters).
- X: the argument is treated as an integer and presented as a hexadecimal number (with upper-case letters).
- f: the argument is treated as a float and presented as a floating-point number.
- g: the same as e or f, the shortest one is selected.
- G: the same as E or F, the shortest one is selected.
- e: the argument is treated as using the scientific notation with lower-case 'e' (e.g. 1.2e+2).
- E: the argument is treated as using the scientific notation with upper-case 'E' (e.g. 1.2E+2).
- s: the argument is treated as and presented as a string.
- p: the argument is treated as and presented as a pointer address.
- %: a literal percent character. No argument is required.
Return value
Resulting string value.string ToString ( string format, IFormatProvider formatProvider ) #
Converts the current value to a string value.Arguments
- string format - String formatting to be used. A format string is composed of zero or more ordinary characters (excluding %) that are copied directly to the result string and control sequences, each of which results in fetching its own parameter. Each control sequence consists of a percent sign (%) followed by one or more of these elements, in order:
- An optional number, a width specifier, that says how many characters (minimum) this conversion should result in.
- An optional precision specifier that says how many decimal digits should be displayed for floating-point numbers.
- A type specifier that says what type the argument data should be treated as. Possible types:
- c: the argument is treated as an integer and presented as a character with that ASCII value.
- d or i: the argument is treated as an integer and presented as a (signed) decimal number.
- o: the argument is treated as an integer and presented as an octal number.
- u: the argument is treated as an integer and presented as an unsigned decimal number.
- x: the argument is treated as an integer and presented as a hexadecimal number (with lower-case letters).
- X: the argument is treated as an integer and presented as a hexadecimal number (with upper-case letters).
- f: the argument is treated as a float and presented as a floating-point number.
- g: the same as e or f, the shortest one is selected.
- G: the same as E or F, the shortest one is selected.
- e: the argument is treated as using the scientific notation with lower-case 'e' (e.g. 1.2e+2).
- E: the argument is treated as using the scientific notation with upper-case 'E' (e.g. 1.2E+2).
- s: the argument is treated as and presented as a string.
- p: the argument is treated as and presented as a pointer address.
- %: a literal percent character. No argument is required.
- IFormatProvider formatProvider - Provider to be used to format the value. Pass a null reference to obtain the numeric format information from the current locale setting of the operating system.
Return value
Resulting string value.IEnumerator<float> GetEnumerator ( ) #
Returns an IEnumerator for the object.Return value
Return value.IEnumerator GetEnumerator ( ) #
Returns an IEnumerator for the object.Return value
Return value.Last update:
2024-08-16
Help improve this article
Was this article helpful?
(or select a word/phrase and press Ctrl+Enter)