This page has been translated automatically.
Video Tutorials
Interface
Essentials
Advanced
How To
Basics
Rendering
Professional (SIM)
UnigineEditor
Interface Overview
Assets Workflow
Version Control
Settings and Preferences
Working With Projects
Adjusting Node Parameters
Setting Up Materials
Setting Up Properties
Lighting
Sandworm
Using Editor Tools for Specific Tasks
Extending Editor Functionality
Built-in Node Types
Nodes
Objects
Effects
Decals
Light Sources
Geodetics
World Nodes
Sound Objects
Pathfinding Objects
Players
Programming
Fundamentals
Setting Up Development Environment
Usage Examples
C++
C#
UnigineScript
UUSL (Unified UNIGINE Shader Language)
Plugins
File Formats
Materials and Shaders
Rebuilding the Engine Tools
GUI
Double Precision Coordinates
API
Animations-Related Classes
Containers
Common Functionality
Controls-Related Classes
Engine-Related Classes
Filesystem Functionality
GUI-Related Classes
Math Functionality
Node-Related Classes
Objects-Related Classes
Networking Functionality
Pathfinding-Related Classes
Physics-Related Classes
Plugins-Related Classes
IG Plugin
CIGIConnector Plugin
Rendering-Related Classes
VR-Related Classes
Content Creation
Content Optimization
Materials
Material Nodes Library
Miscellaneous
Input
Math
Matrix
Textures
Art Samples
Tutorials

Cubemap Texture Sample

These material graph samples demonstrate creation of materials applying custom cubemap textures for reflective and refractive materials.

Cubemap Reflection Sample#

First, we get a reflection vector based on current camera's view direction vector and the object's normal vector, both in the world space. So, to the input ports of the Reflect node we connect outputs of the Vertex Normal node and the View Direction node (using the -X|-Y|-Z port adapter to get the opposite direction, as incident vector is the opposite of the view vector).

Then, according to the obtained coordinates in the world space, the Sample Texture node obtains the pixel data from the cubemap (Texture Cube node), sampling a specified MIP-level provided by the Slider parameter node (adjustable via the Parameters panel in UnigineEditor) to fake roughness of the surface. The color value is passed to the Emissive slot of the material.

The zero Albedo value (to preserve initial colors of the cubemap texture) is specified directly.

Finally, the data output is passed to the Final node.

Cubemap Refraction Sample#

First, we get a refraction vector based on current camera's view direction vector and the object's normal vector, both in the world space. So, to the input ports of the Refract node we connect the outputs of the Vertex Normal node and the View Direction node (using the -X|-Y|-Z port adapter to get the opposite direction, as incident vector is the opposite of the view vector).

The Refraction Index is the ratio of indices of refraction of two environments, so we pass 1 (IOR of air) divided by the desired IOR value of our material.

Then, according to the obtained coordinates in the world space, the Sample Texture node obtains the pixel data from the cubemap (Texture Cube node), sampling a specified MIP-level provided by the Slider parameter node (adjustable via the Parameters panel in UnigineEditor) to fake roughness of the surface. The first three components (x,y,z) of the color value are passed to the Emissive slot of the material.

The zero Albedo and Roughness values (to preserve initial colors of the cubemap texture) are specified directly.

Finally, the data output is passed to the Final node.

Last update: 2024-08-16
Build: ()