Unigine::LightWorld Class
Header: | #include <UnigineLights.h> |
Inherits: | Light |
This class is used to create world light sources. This type of light source imitates sunlight and uses parallel-split shadow mapping.
Example#
The following code illustrates how to create a world light source and set its parameters (intensity scattering, etc.).
#include <UnigineLights.h>
using namespace Unigine;
/* .. */
// creating a world light source and setting its color to white (1.0f, 1.0f, 1.0f, 1.0f)
LightWorldPtr thesun = LightWorld::create(Math::vec4(1.0f, 1.0f, 1.0f, 1.0f));
// setting the name of the world light
thesun->setName("Sun");
// setting disable angle of the world light
thesun->setDisableAngle(90.0f);
// setting light intensity
thesun->setIntensity(1.0f);
// setting scattering type to sun scattering
thesun->setScattering(LightWorld::SCATTERING_SUN);
Setting Position#
A world light is an infinitely distant light source, so its physical position is not important, only the direction matters, as it defines orientation of shadows. You can change the light's direction via the setRotation() method.
Let's illustrate that by setting the correct position of the Sun for a certain geographic location (latitude, longitude), date and time. To calculate elevation and azimuth values let's use the following sunPosition() function:
sunPosition() function:
using namespace Unigine;
/// function calculating azimuth and elevation for the specified date, time (GMT) and geo-coordinates (https://stackoverflow.com/questions/8708048/position-of-the-sun-given-time-of-day-latitude-and-longitude)
void sunPosition(double & elevation, double& azimuth, double lat, double lon, int year = 2012, int month = 12, int day = 22, double hour = 12, int min = 00, int sec = 00) {
double pi = 3.141592650f;
double twopi = 2 * pi;
double deg2rad = pi / 180.0f;
// get a day of the year, e.g. Feb 1 = 32, Mar 1 = 61 on leap years
int month_days[13] = { 0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30 };
for (int i = 0; i<month; i++)
day += month_days[i];
int leapdays = (year % 4) == 0 && ((year % 400) == 0 || (year % 100) != 0) && day >= 60 && !(month == 2 && day == 60);
if (leapdays > 0) day++;
// Get Julian date - 2400000
hour += min / 60.0f + sec / 3600.0f; // hour plus fraction
double delta = year - 1949.0f;
double leap = int(delta / 4.0f); // former leapyears
double jd = 32916.5f + delta * 365 + leap + day + hour / 24.0f;
// calculating input for the Atronomer's almanach as the difference between
// the Julian date and JD 2451545.0 (noon, 1 January 2000)
double time = jd - 51545.0f;
// calculating mean longitude and mean anomaly
double mnlong = 280.460f + 0.9856474f * time;
mnlong = remainder(mnlong, 360);
if (mnlong < 0) mnlong += 360;
double mnanom = 357.528f + 0.9856003f * time;
mnanom = remainder(mnanom, 360);
if (mnanom < 0) mnanom += 360;
mnanom *= deg2rad;
// calculating ecliptic longitude and obliquity of ecliptic
double eclong = mnlong + 1.915f * Math::sin(mnanom) + 0.020f * Math::sin(2 * mnanom);
eclong = remainder(eclong, 360);
if (eclong < 0) eclong += 360;
double oblqec = 23.439f - 0.0000004f * time;
eclong *= deg2rad;
oblqec *= deg2rad;
// calculating celestial coordinates: right ascension and declination
double num = Math::cos(oblqec) * Math::sin(eclong);
double den = Math::cos(eclong);
double ra = Math::atan(num / den);
if (den < 0) ra += pi;
if (den >= 0 && num < 0) ra += twopi;
double dec = Math::asin(Math::sin(oblqec) * Math::sin(eclong));
// calculating local coordinates Greenwich mean sidereal time
double gmst = 6.697375f + 0.0657098242f * time + hour;
gmst = remainder(gmst, 24);
if (gmst < 0) gmst += 24.0f;
// calculating local mean sidereal time
double lmst = gmst + lon / 15.0f;
lmst = remainder(lmst, 24);
if (lmst < 0) lmst += 24.0f;
lmst = lmst * 15.0f * deg2rad;
// calculating hour angle
double ha = lmst - ra;
if (ha < -pi) ha += twopi;
if (ha > pi) ha -= twopi;
// converting latitude to radians
lat = lat * deg2rad;
// calculating azimuth and elevation
elevation = Math::asin(Math::sin(dec) * Math::sin(lat) + Math::cos(dec) * Math::cos(lat) * Math::cos(ha));
azimuth = Math::asin(-Math::cos(dec) * Math::sin(ha) / Math::cos(elevation));
// for logic and names, see Spencer, J.W. 1989. Solar Energy. 42(4):353
int cosAzPos = (0 <= Math::sin(dec) - Math::sin(elevation) * Math::sin(lat));
int sinAzNeg = (Math::sin(azimuth) < 0);
if (cosAzPos && sinAzNeg) azimuth += twopi;
if (!cosAzPos) azimuth = pi - azimuth;
// return elevation and azimuth
elevation = elevation / deg2rad;
azimuth = azimuth / deg2rad;
}
Thus, we can simply set the position of the Sun as follows:
int AppWorldLogic::init() {
/* ... */
// geo-coordinates of a point (latitude and longitude)
double lat = 56.49771;
double lon = 84.97437;
// elevation and azimuth to store calculated values
double elevation, azimuth;
// getting the default world light source named "sun"
LightWorldPtr sun = checked_ptr_cast<LightWorld>(World::getNodeByName("sun"));
if (sun)
{
// calculating azimuth and elevation
// for the specified date,
// GMT time and geo-coordinates
sunPosition(elevation,azimuth, lat, lon,
2019, 2, 5, // February 5, 2019
4, 0, 0); // 04:00:00 (GMT)
// setting real Sun position for the calculated azimuth and elevation values
sun->setRotation( quat(90,270,270) * quat(azimuth,0,0) * quat(0,90,0) * quat(elevation,0,0) * quat(90,0,0) );
}
return 1;
}
LightWorld Class
Enums
SCATTERING#
SHADOW_CASCADE_MODE#
Members
static LightWorldPtr create ( const Math::vec4 & color ) #
Constructor. Creates a new world light source with a given color.Arguments
- const Math::vec4 & color - Color of the new light source.
void setMode ( int mode ) #
Sets rendering mode for the light source. This option determines whether the light is to be rendered as a dynamic or static one.Arguments
- int mode - Light mode, one of the MODE_* variables.
int getMode ( ) #
Returns the current rendering mode for the light source. This option determines whether the light is to be rendered as a dynamic or static one.Return value
Light mode, one of the MODE_* variables.void setDisableAngle ( float angle ) #
Sets an angle at which the light source is disabled (shadows and the diffuse component is disabled). However, the light source still affects scattering.Arguments
- float angle - Angle at which the light source is disabled.
float getDisableAngle ( ) #
Returns an angle at which the light source is disabled (shadows and the diffuse component is disabled). However, the light source still affects scattering.Return value
Angle at at which the light source is disabled.void setNumShadowCascades ( int cascades ) #
Sets the number of shadow cascades with different shadow maps. All the shadow maps have the same resolution, but are applied to different cascades. Thus, close-range shadows are of higher quality and distant ones of lower.Arguments
- int cascades - Number of shadow cascades. Accepted values are from 1 to 4. The default is 4.
int getNumShadowCascades ( ) #
Returns the number of shadow cascades with different shadow maps. All the shadow maps have the same resolution, but are applied to different cascades. Thus, close-range shadows are of higher quality and distant ones of lower.Return value
The number of shadow cascades. The minimum number of cascades is 1, the maximum is 4.void setScattering ( int scattering ) #
Sets a lighting type for the world light.Arguments
- int scattering - One of the SCATTERING_* variables.
int getScattering ( ) #
Returns a lighting type set for the world light.Return value
One of the SCATTERING_* variables.void setShadowCascadeMode ( int mode ) #
Sets the shadow cascade generation mode for the world light source. There are two modes available:- Dynamic - shadow cascades are built dynamically relative to the camera's position.
- Static - shadow cascades are built relative to the world light's position and baked. This mode is suitable for archviz projects.
Arguments
- int mode - Shadow cascade mode, one of the SHADOW_CASCADE_MODE_* variables.
int getShadowCascadeMode ( ) #
Returns the current shadow cascade generation mode for the world light source. There are two modes available:- Dynamic - shadow cascades are built dynamically relative to the camera's position.
- Static - shadow cascades are built relative to the world light's position and baked. This mode is suitable for archviz projects.
Return value
Shadow cascade mode, one of the SHADOW_CASCADE_MODE_* variables.void setShadowCascadeBorder ( int num, float r ) #
Sets the multiplier for the distance to the border of the specified shadow cascade at which the corresponding shadows are rendered.Arguments
- int num - Number of the cascade in range [0;num_cascades-1].
- float r - Distance multiplier to be set, in range [0; 1].
float getShadowCascadeBorder ( int num ) #
Returns the multiplier for the distance to the border of the specified shadow cascade at which the corresponding shadows are rendered.Arguments
- int num - Number of the cascade in range [0;num_cascades-1].
Return value
Current distance multiplier, in range [0;1].void setShadowHeight ( float height ) #
Sets the view height of the orthographic projection used for generation of static shadow cascades. Static cascades are generated relative to the world light's position.Arguments
- float height - View height of the orthographic projection used for shadow cascade generation, in units.
float getShadowHeight ( ) #
Returns the current view height of the orthographic projection used for generation of static shadow cascades. Static cascades are generated relative to the world light's position.Return value
Current view height of the orthographic projection used for shadow cascade generation, in units.void setShadowWidth ( float width ) #
Sets the view width of the orthographic projection used for generation of static shadow cascades. Static cascades are generated relative to the world light's position.Arguments
- float width - View width of the orthographic projection used for shadow cascade generation, in units.
float getShadowWidth ( ) #
Returns the current view width of the orthographic projection used for generation of static shadow cascades. Static cascades are generated relative to the world light's position.Return value
Current view width of the orthographic projection used for shadow cascade generation, in units.void setShadowZFar ( float zfar ) #
Sets the distance to the far clipping plane to be used for generation of static shadow cascades. Static cascades are generated relative to the world light's position.Arguments
- float zfar - Distance to the far clipping plane to be used, in units.
float getShadowZFar ( ) #
Returns the current distance to the far clipping plane used for generation of static shadow cascades. Static cascades are generated relative to the world light's position.Return value
Distance to the far clipping plane currently used, in units.static int type ( ) #
Returns the type of the node.Return value
Light type identifier.Math::vec2 getRenderShadowDepthRange ( ) const#
Returns shadow depth range for the light source.Return value
Shadow depth range for the light source as a two-component vector (min, max).Math::Mat4 getRenderShadowCascadeModelview ( int num ) const#
Returns the model-view matrix for the specified shadow cascade.Arguments
- int num - Shadow cascade number in the [0;num_cascades-1] range.
Return value
Shadow cascade model-view matrix matrix.Math::mat4 getRenderShadowCascadeProjection ( int num ) const#
Returns the shadow cascade projection matrix for the specified cascade number.Arguments
- int num - Shadow cascade number in the [0;num_cascades-1] range.
Return value
Shadow cascade projection matrix.void updateRenderShadowCascadeMatrices ( const Math::Vec3 & camera_position, float zfar ) #
Updates projection matrices for the shadow cascades of the light source in accordance with the specified camera position and distance to the far clipping plane.Arguments
- const Math::Vec3 & camera_position - Position of the camera in world coordinates.
- float zfar - Distance to the far z-clipping plane, in units.