注意! 这个版本的文档是过时的,因为它描述了一个较老的SDK版本!请切换到最新SDK版本的文档。
Unigine::Navigation Class
Header: | #include <UniginePathFinding.h> |
Inherits: | Node |
This class contains functions that enable to get or change parameters of a navigation area within which pathfinding is performed. The navigation area can be either a navigation sector or a navigation mesh.
For example, by using the functions of this class, you can scale velocity of the point moving inside the navigation area. Or you can change the danger factor of the area.
See Also
- Articles of the Navigation Area section
- a set of samples located in the data/samples/paths folder
Navigation Class
Members
Ptr<Navigation> cast(const Ptr<Node> & node)
Casts a Navigation out of the Node instance.Arguments
- const Ptr<Node> & node - Pointer to Node.
Return value
Pointer to Navigation.void setDangerous(float dangerous)
Sets the danger factor that indicates if the point that moves inside the navigation area should try to avoid this area.If the danger factor exceeds the maximum danger factor set for the route, the navigation area will be excluded from pathfinding calculations.
Arguments
- float dangerous - Danger factor.
float getDangerous()
Returns the current danger factor that indicates if the point that moves inside the navigation area should try to avoid this area.If the danger factor exceeds the maximum danger factor set for the route, the navigation area will be excluded from pathfinding calculations.
Return value
The danger factor.Ptr<Navigation> getNavigation(int num)
Returns the specified connected navigation area.Arguments
- int num - The navigation area number.
Return value
The navigation area.Ptr<Navigation> getNavigation()
Returns the specified connected navigation area.Return value
The navigation area.void setNavigationMask(int mask)
Sets a navigation mask for the navigation area. The navigation mask of the navigation area must match the navigation mask of the route that is calculated within it. Otherwise, the area will not participate in pathfinding. By using the navigation mask, you can specify navigation ares that must be ignored during pathfinding.Arguments
- int mask - An integer value, each bit of which is used to set a mask.
int getNavigationMask()
Returns the current navigation mask of the navigation area. The navigation mask of the navigation area must match the navigation mask of the route that is calculated within it. Otherwise, the area will not participate in pathfinding.Return value
An integer value, each bit of which is used to set a mask.int getNumNavigations()
Returns the number of navigation areas that intersect the current one.Return value
The number of connected navigation areas.void setQuality(int quality)
Sets a quality of optimization of the route that has already been calculated. This value specifies the number of iterations that are used for taking the short cut. However, the higher the value, the longer the route calculation will take.Arguments
- int quality - A quality value. If a negative value is provided, 0 will be used instead.
int getQuality()
Returns the quality of optimization of the route that has already been calculated. The quality value specifies the number of iterations that are used for taking the short cut.Return value
The quality value.void setVelocity(float velocity)
Sets a scaling factor for velocity of the point that moves inside the navigation area along the calculated route.Arguments
- float velocity - A velocity scaling factor.
float getVelocity()
Returns the current scaling factor for velocity of the point that moves inside the navigation area along the calculated route.Return value
The velocity scaling factor.int inside(const Ptr<Navigation> & navigation)
Arguments
- const Ptr<Navigation> & navigation
int inside2D(const Math::Vec3 & point, float radius)
Depending on the type of the navigation area, the function performs the following:- For navigation sectors, it checks whether the given point is inside the navigation sector. The height of the navigation sector (Z coordinate) is ignored.
- For navigation meshes, it checks whether the given point is inside the navigation mesh and the distance from the point to the mesh is in range [-height;height]. Here height is a height of the navigation mesh.
Arguments
- const Math::Vec3 & point - Point coordinates.
- float radius - The radius of the point. The radius is used to exclude exceeding the navigation mesh by the point.
If the radius is set, it is more likely that the point will be inside the navigation mesh.
When calling the function for NavigationSector, this option is irrelevant.
Return value
1 if the point is inside the navigation area; otherwise, 0.int inside3D(const Math::Vec3 & point, float radius)
Depending on the type of the navigation area, the function performs the following:- For navigation sectors, it checks whether the given point is inside the navigation area. Notice that the height of the navigation sector (Z coordinate) is also taken into account.
- For navigation meshes, it checks whether the given point is inside the navigation mesh and the distance from the point to the mesh is in range [0;height]. Here height is a height of the navigation mesh.
Arguments
- const Math::Vec3 & point - Point coordinates.
- float radius - The radius of the point. The radius is used to exclude exceeding the navigation mesh by the point.
If the radius is set, it is more likely that the point will be inside the navigation mesh.
When calling the function for NavigationSector, this option is irrelevant.
Return value
1 it the point is inside the navigation area; otherwise, 0.Last update: 2017-07-03
Help improve this article
(or select a word/phrase and press Ctrl+Enter)