Unigine.JointPrismatic Class
Inherits: | Joint |
This class is used to create prismatic joints.
Example
The following code illustrates connection of two bodies (b0 and b1) using a prismatic joint.
JointPrismatic joint = new JointPrismatic(b0, b1);
// setting joint axis coordinates
joint.setWorldAxis(new vec3(0.0f, 0.0f, 1.0f));
// setting common joint constraint parameters
joint.setLinearRestitution(0.4f);
joint.setAngularRestitution(0.4f);
joint.setLinearSoftness(0.4f);
joint.setAngularSoftness(0.4f);
// setting linear damping
joint.setLinearDamping(4.0f);
// setting linear limits [-1.5; 1.5]
joint.setLinearLimitFrom(-1.5f);
joint.setLinearLimitTo(1.5f);
// setting number of iterations
joint.setNumIterations(16);
See Also
Usage examples:
JointPrismatic Class
Members
static JointPrismatic()
Constructor. Creates a prismatic joint with an anchor at the origin of the world coordinates.static JointPrismatic(Body body0, Body body1)
Constructor. Creates a prismatic joint connecting two given bodies. An anchor is placed between centers of mass of the bodies.Arguments
- Body body0 - First body to be connected with the joint.
- Body body1 - Second body to be connected with the joint.
static JointPrismatic(Body body0, Body body1, Vec3 anchor, vec3 size)
Constructor. Creates a prismatic joint connecting two given bodies with specified axis coordinates and an anchor placed at specified coordinates.Arguments
- Body body0 - First body to be connected with the joint.
- Body body1 - Second body to be connected with the joint.
- Vec3 anchor - Anchor coordinates.
- vec3 size - Axis coordinates.
JointPrismatic cast(Joint joint)
Casts a JointPrismatic out of the Joint instance.Arguments
- Joint joint - Joint instance.
Return value
JointPrismatic.void setAxis0(vec3 axis0)
Sets a joint axis in the local coordinates of the first body.Arguments
- vec3 axis0 - Joint axis in the coordinates of the first body.
vec3 getAxis0()
Returns the joint axis in the local coordinates of the first body.Return value
Joint axis in the coordinates of the first body.float getCurrentLinearDistance()
Returns the current distance between the bodies.Return value
Current distance in units.float getCurrentLinearVelocity()
Returns the current velocity of the attached motor.Return value
Current velocity in units per second.void setLinearDamping(float damping)
Sets a linear damping of the joint.Arguments
- float damping - Linear damping. If a negative value is provided, 0 will be used instead.
float getLinearDamping()
Returns the linear damping of the joint.Return value
Linear damping.void setLinearDistance(float distance)
Sets a target distance of the attached spring. The spring tries to move the connected bodies so that to keep this distance between them.Arguments
- float distance - Target distance in units.
float getLinearDistance()
Returns the target distance of the attached spring. The spring tries to move the connected bodies so that to keep this distance between them.Return value
Target distance in units.void setLinearForce(float force)
Sets a maximum force of the attached motor.Arguments
- float force - Maximum force. If a negative value is provided, 0 will be used instead. 0 detaches the motor.
float getLinearForce()
Returns the maximum force of the attached motor. 0 means that the motor is not attached.Return value
Maximum force.void setLinearLimitFrom(float from)
Sets a low limit distance. This limit specifies how far a connected body can move along the joint axis.Arguments
- float from - Distance in units.
float getLinearLimitFrom()
Returns the low limit distance. This limit specifies how far a connected body can move along the joint axis.Return value
Low limit distance in units.void setLinearLimitTo(float to)
Sets a high limit distance. This limit specifies how far a connected body can move along the joint axis.Arguments
- float to - Distance in units.
float getLinearLimitTo()
Returns the high limit distance. This limit specifies how far a connected body can move along the joint axis.Return value
High limit distance in units.void setLinearSpring(float spring)
Sets a rigidity coefficient of the spring.Arguments
- float spring - Rigidity coefficient. If a negative value is provided, 0 will be used instead. 0 detaches the spring.
float getLinearSpring()
Returns the rigidity coefficient of the spring. 0 means that the spring is not attached.Return value
Rigidity coefficient.void setLinearVelocity(float velocity)
Sets a target velocity of the attached motor.Arguments
- float velocity - Target velocity in units per second.
float getLinearVelocity()
Returns the target velocity of the attached motor.Return value
Target velocity in units per second.void setRotation0(mat3 rotation0)
Sets a rotation matrix of the anchor point in a system of coordinates of the first connected body.Arguments
- mat3 rotation0 - Rotation matrix in the body coordinate space.
mat3 getRotation0()
void setRotation1(mat3 rotation1)
Sets a rotation matrix of the anchor point in a system of coordinates of the second connected body.Arguments
- mat3 rotation1 - Rotation matrix in the body coordinate space.
mat3 getRotation1()
void setWorldAxis(vec3 axis)
Sets a joint axis in the world coordinates.Arguments
- vec3 axis - Joint axis in the world coordinates.
vec3 getWorldAxis()
Returns the joint axis in the world coordinates.Return value
Joint axis in the world coordinates.void setWorldRotation(mat3 rotation)
Sets a rotation matrix of the anchor point in the world system of coordinates.Arguments
- mat3 rotation - Rotation matrix in the world coordinate space.
mat3 getWorldRotation()
Last update: 2018-06-04
Help improve this article
Was this article helpful?
(or select a word/phrase and press Ctrl+Enter)