This page has been translated automatically.
UnigineEditor
Interface Overview
Assets Workflow
Settings and Preferences
Adjusting Node Parameters
Setting Up Materials
Setting Up Properties
Landscape Tool
Using Editor Tools for Specific Tasks
FAQ
编程
Fundamentals
Setting Up Development Environment
Usage Examples
UnigineScript
C++
C#
UUSL (Unified UNIGINE Shader Language)
File Formats
Rebuilding the Engine and Tools
GUI
Double Precision Coordinates
应用程序接口
Containers
Common Functionality
Controls-Related Classes
Engine-Related Classes
Filesystem Functionality
GUI-Related Classes
Math Functionality
Node-Related Classes
Networking Functionality
Pathfinding-Related Classes
Physics-Related Classes
Plugins-Related Classes
CIGI Client Plugin
Rendering-Related Classes
注意! 这个版本的文档是过时的,因为它描述了一个较老的SDK版本!请切换到最新SDK版本的文档。
注意! 这个版本的文档描述了一个不再受支持的旧SDK版本!请升级到最新的SDK版本。

Unigine::WorldClutter Class

Header:#include <UnigineWorlds.h>
Inherits:Node

WorldClutter class allows to randomly position reference nodes according to the mask and using the specified seed. For each node a probability of appearing is set. All nodes in the world clutter are rendered visible only within a specified distance and then fade out. Just like the ObjectGrass, world clutter is rendered in cells.

There are two benefits of using WorldClutter:

  • Instances of nodes that are currently outside the view frustum are not stored in the memory, which provides much more efficient memory usage.
  • Less cluttered spatial tree, which allows, for example, faster collision detection.

You can use a mask to cut out clutter objects in the areas of intersection with other objects and decals (e.g. to remove vegetation under houses or from the surface of roads projected using decals).

WorldClutter Class

Members


static WorldClutterPtr create()

Constructor. Creates a world clutter with default properties.

Ptr<WorldClutter> cast(const Ptr<Node> & node)

Casts a WorldClutter out of the Node instance.

Arguments

  • const Ptr<Node> & node - Pointer to Node.

Return value

Pointer to WorldClutter.

void invalidate()

Invalidates all world clutter cells. All invalidated cells will be regenerated.

void invalidate(const UNIGINE_BOUND_BOX & bounds)

Invalidates all world clutter cells within the area specified by the given bounding box. All invalidated cells will be regenerated.

Arguments

  • const UNIGINE_BOUND_BOX & bounds - Bounding box, defining the area, where world clutter cells will be regenerated.

void setAngle(float angle)

Sets the angle cosine that defines the slope steepness appropriate for positioning nodes.

Arguments

  • float angle - Slope angle cosine. The provided value will be saturated in range [0;1].

float getAngle()

Returns the current angle cosine that defines the slope steepness appropriate for positioning nodes.

Return value

Slope angle cosine.

void setDensity(float density)

Sets the density factor that defines the amount of reference nodes per square unit.

Arguments

  • float density - Density factor. If a negative value is provided, 0 will be used instead.

float getDensity()

Returns the current density factor that defines the number of reference nodes per square unit.

Return value

Density factor.

void setFadeDistance(float distance)

Sets the distance up to which reference nodes will be fading out (that is, fewer nodes will be rendered instead of all). The distance is measured starting from the visible distance.
Notice
In order for a fade distance to be applied, visibility distance should not be infinite.

Arguments

  • float distance - Distance in units. If a negative value is provided, 0 will be used instead.

float getFadeDistance()

Returns the current distance up to which reference nodes are fading out (that is, fewer nodes will be rendered instead of all). The distance is measured starting from the visible distance.
Notice
In order for a fade distance to be applied, visibility distance should not be infinite.

Return value

Distance in units.

void setIntersection(int intersection)

Sets a value indicating whether reference nodes should be scattered upon the ground (along its relief): either the terrain or a mesh set as a parent node.

Arguments

  • int intersection - Positive number to enable intersection; 0 to disable.

int getIntersection()

Returns a value indicating whether reference nodes are scattered upon the ground (along its relief): either the terrain or a mesh set as a parent node.

Return value

1 if intersection is enabled; otherwise, 0.

void setMaskFlipX(int maskflipx)

Flip the mask by X axis.

Arguments

  • int maskflipx - Positive value to flip the mask; otherwise, 0.

int getMaskFlipX()

Returns a flag indicating if a mask is flipped by X axis.

Return value

Positive value if the mask is flipped; otherwise, 0.

void setMaskFlipY(int maskflipy)

Flip the mask by Y axis.

Arguments

  • int maskflipy - Positive value to flip the mask; otherwise, 0.

int getMaskFlipY()

Returns a flag indicating if a mask is flipped by Y axis.

Return value

Positive value if the mask is flipped; otherwise, 0.

int setMaskImage(const Ptr<Image> & image, int invalidate = 1)

Sets an image (in R8 format) that defines the placement of meshes.

Arguments

  • const Ptr<Image> & image - Pointer to the image.
  • int invalidate - Invalidate flag. Set 1 to invalidate all world clutter cells; otherwise, set 0. All invalidated cells will be regenerated.

Return value

1 if the mask image is successfully set; otherwise, 0.

int getMaskImage(Ptr<Image> & image)

Writes the image that is currently used as a mask for the placement of meshes into the given buffer.

Arguments

  • Ptr<Image> & image - Image buffer to store a mask into.

Return value

1 if the mask image is successfully written into the buffer; otherwise, 0.

void setMaskImageName(const char * name, int invalidate = 1)

Sets the name of a new mask image (in R8 format) that defines the placement of meshes.

Arguments

  • const char * name - Name (path) of the mask image.
  • int invalidate - Invalidate flag. Set 1 to invalidate all world clutter cells; otherwise, set 0. All invalidated cells will be regenerated.

const char * getMaskImageName()

Returns the name of a mask image (in R8 format) that defines the placement of reference nodes.

Return value

Name (path) of the mask image.

void setMaskInverse(int inverse)

Specifies if reference nodes should be rendered inside or outside the mask mesh contour.

Arguments

  • int inverse - 0 to render reference nodes inside the mesh contour; 1 to render them outside.

int getMaskInverse()

Returns a flag indicating if reference nodes are rendered inside or outside the mask mesh contour.

Return value

0 if reference nodes are rendered inside the mesh contour; 1 if outside.

void setMaskMaxValue(int value)

Sets the maximum mask value for the WorldClutter object.

Arguments

  • int value - Maximum mask value.

int getMaskMaxValue()

Returns the maximum mask value for the WorldClutter object.

Return value

Maximum mask value.

int setMaskMesh(const Ptr<Mesh> & mesh, int invalidate = 1)

Sets a mesh to be used as a mask on-the-fly. Limitations:
  • Before the method is called, another mesh must be set via setMaskMeshName() first.
  • If the world is reloaded, the mesh set via setMaskMeshName() will be loaded.
  • If the memory limit is exceeded, the new mesh might be replaced with the mesh set via setMaskMeshName().

Arguments

  • const Ptr<Mesh> & mesh - Pointer to the mesh.
  • int invalidate - Invalidate flag. Set 1 to invalidate all world clutter cells; otherwise, set 0. All invalidated cells will be regenerated.

Return value

1 if the mesh is set successfully; otherwise - 0.

int getMaskMesh(const Ptr<Mesh> & mesh)

Copies the current mask mesh (if it exists) to the specified target mesh.

Arguments

  • const Ptr<Mesh> & mesh - Pointer to the mesh to copy the current mask mesh to.

Return value

1 if mesh mask exists; otherwise - 0.

void setMaskMeshName(const char * name, int invalidate = 1)

Sets a mesh to be used as a mask for the world clutter. This mesh should be plane.

Arguments

  • const char * name - Path to the *.mesh file.
  • int invalidate - Invalidate flag. Set 1 to invalidate all world clutter cells; otherwise, set 0. All invalidated cells will be regenerated.

const char * getMaskMeshName()

Returns the name (path) of the current mesh used as a mask for the world clutter. This mesh should be plane.

Return value

Path to the *.mesh file.

void setMaskMinValue(int value)

Sets the minimum mask value for the WorldClutter object.

Arguments

  • int value - Minimum mask value.

int getMaskMinValue()

Returns the minimum mask value for the WorldClutter object.

Return value

Minimum mask value.

void setMaxScale(float mean, float spread)

Sets the scale for meshes in the areas with high density (according to the mask). With the minimum scale it is possible to automatically render, for example, big trees in the center of the forest. A spread value enables to control the range of scales relative to the mean value.

Arguments

  • float mean - Scale mean value.
  • float spread - Maximum spread value to randomly upscale or downscale objects.

float getMaxScaleMean()

Returns the scale mean value for meshes in the areas with high density (according to the mask).

Return value

Scale mean value.

float getMaxScaleSpread()

Returns the scale spread value that controls the range of mesh scales in the areas with high density (according to the mask).

Return value

Scale spread value.

void setMinScale(float mean, float spread)

Sets the scale for meshes in the areas with low density (according to the mask). With the minimum scale it is possible to automatically render, for example, small trees at the forest border. A spread value allows to control the range of scales relative to the mean value.

Arguments

  • float mean - Scale mean value.
  • float spread - Maximum spread value to randomly upscale or downscale objects.

float getMinScaleMean()

Returns the scale mean value for meshes in the areas with low density (according to the mask).

Return value

Scale mean value.

float getMinScaleSpread()

Returns the scale spread value that controls the range of mesh scales in the areas with low density (according to the mask).

Return value

Scale spread value.

void setNodesRotation(const Math::vec3 & mean, const Math::vec3 & spread)

Sets the rotation of reference nodes along X, Y and Z axes.

Arguments

  • const Math::vec3 & mean - Mean values of rotation angles in degrees.
  • const Math::vec3 & spread - Spread values of rotation angles in degrees.

Math::vec3 getNodesRotationMean()

Returns the mean value of reference nodes rotation along X, Y and Z axes.

Return value

Mean values of rotation angles in degrees.

Math::vec3 getNodesRotationSpread()

Returns the spread value of reference nodes rotation along X, Y and Z axes.

Return value

Spread values of rotation angles in degrees.

int getNumReferences()

Returns the total number of reference nodes contained in the world clutter.

Return value

The number of reference nodes.

void setOffset(float mean, float spread)

Sets the vertical offset that determines the placement of reference nodes above or below the surface.

Arguments

  • float mean - Mean value of the offset in units.
  • float spread - Spread value of the offset in units.

float getOffsetMean()

Returns the current mean value of the vertical offset that determines the placement of reference nodes above or below the surface.

Return value

Mean value of the offset in units.

float getOffsetSpread()

Returns the current spread value of the vertical offset that determines the placement of reference nodes above or below the surface.

Return value

Spread value of the offset in units.

void setOrientation(int orientation)

Sets a value indicating whether reference nodes should be oriented along the normals of the ground (either the terrain or a mesh set as a parent node).

Arguments

  • int orientation - Positive number to enable orientation; 0 to disable.

int getOrientation()

Returns a value indicating whether reference nodes are oriented along the normals of the ground (either the terrain or a mesh set as a parent node).

Return value

1 if orientation is enabled; otherwise, 0.

void setReferenceName(int num, const char * name)

Sets the name of the specified reference node contained in the world clutter.

Arguments

  • int num - The number of the reference node.
  • const char * name - Name to be updated.

const char * getReferenceName(int num)

Returns the name of the reference node contained in the world clutter.

Arguments

  • int num - The number of the reference node among contained in the world clutter.

Return value

Name of the reference node.

void setReferenceProbability(int num, float probability)

Sets the probability of the occurrence of the specified node reference.

Arguments

  • int num - The number of the reference node.
  • float probability - Probability factor. The provided value is saturated in range [0;1].

float getReferenceProbability(int num)

Returns the probability of the occurrence of the specified node reference.

Arguments

  • int num - The number of the reference node.

Return value

Probability factor.

void setSeed(int seed)

Sets the seed for pseudo-random positioning of reference nodes.

Arguments

  • int seed - Number used to initialize a pseudo-random sequence. If a negative value is provided, 0 will be used instead.

int getSeed()

Returns the seed used for pseudo-random positioning of reference nodes.

Return value

Number used to initialize a pseudo-random sequence.

void setSizeX(float sizex)

Sets the width of the world clutter along the X-coordinate.

Arguments

  • float sizex - X-coordinate width in units. If a negative value is provided, 0 will be used instead.

float getSizeX()

Returns the current width of the world clutter along the X-coordinate.

Return value

X-coordinate width in units.

void setSizeY(float sizey)

Sets the length of the world clutter along the Y-coordinate.

Arguments

  • float sizey - Y-coordinate length in units. If a negative value is provided, 0 will be used instead.

float getSizeY()

Returns the current length of the world clutter along the Y-coordinate.

Return value

Y-coordinate length in units.

void setSpawnRate(int rate)

Determines how many cells (in which the world clutter is rendered) are updated each frame. High number of updated cells may lead to a performance spike.

Arguments

  • int rate - Number of cells to be updated. If a non-positive value is provided, 1 will be used instead.

int getSpawnRate()

Returns the number of cells updated each frame. High number of updated cells may lead to a performance spike.

Return value

Number of cells to be updated.

void setStep(float step)

Sets the step for cells used to render node references.

Arguments

  • float step - Step for clutter cells in units.

float getStep()

Returns the step for cells used to render node references contained in the world clutter.

Return value

Step for clutter cells in units.

void setThreshold(float threshold)

Sets the density threshold (for a mask) starting from which reference nodes are rendered if placed dense enough.

Arguments

  • float threshold - Density threshold. The provided value will be saturated in range [0;1].

float getThreshold()

Returns the current density threshold (for a mask) starting from which reference nodes are rendered if placed dense enough.

Return value

Density threshold.

void setVisibleDistance(float distance)

Sets the distance up to which all the reference nodes will be rendered. The distance is measured from the camera.

Arguments

  • float distance - Distance in units. If a negative value is provided, 0 will be used instead.

float getVisibleDistance()

Returns the current distance up to which all the reference nodes will be rendered. The distance is measured from the camera.

Return value

Distance in units.

int addReference(const char * name)

Adds a new reference node to the world clutter.

Arguments

  • const char * name - Name of the reference node.

Return value

The number of added reference node.

void removeReference(int num)

Removes the specified reference node from the world clutter.

Arguments

  • int num - The number of the reference node.

int type()

Returns the type of the node.

Return value

World type identifier.

void setCutoutIntersectionMask(int mask)

Sets a new cutout intersection mask. This mask allows you to cut out clutter objects in the areas of intersection with other objects and decals (e.g. can be used to remove vegetation under houses or from the surface of roads projected using decals). Clutter objects will be cut out by objects and decals that have their intersection mask matching this one (one bit at least).
Notice
To set intersection masks the following methods can be used:

Arguments

  • int mask - Integer, each bit of which is a mask.

int getCutoutIntersectionMask()

Returns the current cutout intersection mask. This mask allows you to cut out clutter objects in the areas of intersection with other objects and decals (e.g. can be used to remove vegetation under houses or from the surface of roads projected using decals). Clutter objects will be cut out by objects and decals that have their intersection mask matching this one (one bit at least).
Notice
To set intersection masks the following methods can be used:

Return value

Integer, each bit of which is a mask.

void setCutoutInverse(int inverse)

Sets a value indicating whether the clutter objects should be rendered inside or outside the areas determined by the cutout intersection mask.

Arguments

  • int inverse - 0 to render clutter objects outside the areas determined by the cutout intersection mask; 1 to render the clutter objects inside these areas.

int getCutoutInverse()

Returns a value indicating if the clutter objects is rendered inside or outside the areas determined by the cutout intersection mask.

Return value

0 if clutter objects are rendered outside the areas determined by the cutout intersection mask; 1 if inside.
Last update: 2018-04-26
Build: ()