This page has been translated automatically.
Видеоуроки
Интерфейс
Основы
Продвинутый уровень
Подсказки и советы
Основы
Программирование на C#
Рендеринг
Профессиональный уровень (SIM)
Принципы работы
Свойства (properties)
Компонентная Система
Рендер
Режимы вывода изображения
Физика
Браузер SDK 2
Лицензирование и типы лицензий
Дополнения (Add-Ons)
Демонстрационные проекты
API Samples
Редактор UnigineEditor
Обзор интерфейса
Работа с ассетами
Контроль версий
Настройки и предпочтения
Работа с проектами
Настройка параметров ноды
Setting Up Materials
Настройка свойств
Освещение
Sandworm
Использование инструментов редактора для конкретных задач
Расширение функционала редактора
Встроенные объекты
Ноды (Nodes)
Объекты (Objects)
Эффекты
Декали
Источники света
Geodetics
World-ноды
Звуковые объекты
Объекты поиска пути
Player-ноды
Программирование
Основы
Настройка среды разработки
Примеры использования
C++
C#
UnigineScript
Унифицированный язык шейдеров UUSL (Unified UNIGINE Shader Language)
Плагины
Форматы файлов
Материалы и шейдеры
Rebuilding the Engine Tools
Интерфейс пользователя (GUI)
Двойная точность координат
API
Animations-Related Classes
Containers
Common Functionality
Controls-Related Classes
Engine-Related Classes
Filesystem Functionality
GUI-Related Classes
Math Functionality
Node-Related Classes
Networking Functionality
Pathfinding-Related Classes
Physics-Related Classes
Plugins-Related Classes
IG Plugin
CIGIConnector Plugin
Rendering-Related Classes
VR-Related Classes
Работа с контентом
Оптимизация контента
Материалы
Визуальный редактор материалов
Material Nodes Library
Miscellaneous
Input
Math
Matrix
Textures
Art Samples
Учебные материалы

Unigine::ObjectMeshCluster Class

Header: #include <UnigineObjects.h>
Inherits from: Object

A MeshCluster class allows you to bake identical meshes (with the same material applied to their surfaces) into one object, which provides less cluttered spatial tree, reduces the number of texture fetches and speeds up rendering.

Meshes are rendered within a specified visibility distance from the camera. When moving away from this distance, meshes fade out and then disappear completely.

See Also#

A set of UnigineScript API samples located in the <UnigineSDK>/data/samples/objects/ folder:

ObjectMeshCluster Class

Members


static ObjectMeshClusterPtr create ( const char * path ) #

ObjectMeshCluster constructor. Creates a mesh cluster with a source mesh loaded from the specified file.

Arguments

  • const char * path - Path to the source mesh file.

static ObjectMeshClusterPtr create ( ) #

ObjectMeshCluster constructor. Creates an empty mesh cluster

void setFadeDistance ( float distance ) #

Sets the distance up to which meshes handled by the mesh cluster will be fading out (that is, fewer meshes will be rendered instead of all). The distance is measured starting from the visible distance. The default is 0. Using fade distance allows the objects to disappear one by one until up to the fade distance only a few left. It makes the disappearing smooth and much less noticeable.

Arguments

  • float distance - Fading distance for meshes in units. If a negative value is provided, 0 will be used instead.

float getFadeDistance ( ) const#

Returns the distance up to which meshes handled by the mesh cluster will be fading out. The default is 0.

Return value

Fading distance for meshes in units.

void setMeshPath ( const char * path ) #

Sets a path to the mesh hadled by the Mesh Cluster. Does not update mesh immediately using the new path. If the mesh is in the procedural mode, it will be reset.

Arguments

  • const char * path - New path to the source .mesh-file to be set.

const char * getMeshPath ( ) const#

Returns the path to the source .mesh-file of the mesh handled by Mesh Cluster.

Return value

Path to the source .mesh-file.

int addMeshTransform ( ) #

Adds a new mesh instance transformation to the Mesh Cluster. To set the new added transformation pass the return value of this method to the setMeshTransform() method.

Return value

Number of the last added mesh instance.

void setMeshTransform ( int num, const Math::mat4 & transform ) #

Sets the transformation for the given mesh instance.

Arguments

  • int num - Mesh instance number.
  • const Math::mat4 & transform - Mesh transformation matrix.

Math::mat4 getMeshTransform ( int num ) const#

Returns the transformation of the given mesh instance.

Arguments

  • int num - Mesh instance number.

Return value

Mesh transformation matrix.

void removeMeshTransform ( int num ) #

Removes the transformation of the specified mesh instance from the cluster.

Arguments

  • int num - Mesh instance number.

void removeMeshTransformFast ( int num ) #

Removes the transformation of the specified mesh instance from the cluster.

Arguments

  • int num - Mesh instance number.

int getNumMeshes ( ) const#

Returns the total number of meshes handled by the mesh cluster.

Return value

Number of meshes.

void setVisibleDistance ( float distance ) #

Sets the distance up to which meshes handled by the mesh cluster will be rendered. The default is infinity (in this case, fade distance will be ignored).

Arguments

  • float distance - Visibility distance for meshes in units. If a negative value is provided, 0 will be used instead.

float getVisibleDistance ( ) const#

Returns the distance up to which meshes handled by the mesh cluster are rendered. The default is infinity (in this case, fade distance is ignored).

Return value

Visibility distance for meshes in units.

void clearMeshes ( ) #

Deletes all meshes currently baked into mesh cluster.

void createMeshes ( const Vector< Math::Mat4> & world_transforms ) #

Creates meshes in accordance with the transformations vector (world coordinates) and bakes them into the cluster. All baked meshes are identical to the source mesh and have the same material applied to their surfaces.

Arguments

  • const Vector< Math::Mat4> & world_transforms - Transformations vector in world coordinates.

void appendMeshes ( const Vector< Math::Mat4> & world_transforms ) #

Appends new meshes with transformations stored in the specified vector (world coordinates) and bakes them into the cluster. All baked meshes are identical to the source mesh and have the same material applied to their surfaces.

Arguments

  • const Vector< Math::Mat4> & world_transforms - Transformations vector in world coordinates.

bool applyMeshProcedural ( const Ptr<Mesh> & mesh ) #

Sets the specified mesh as the source mesh for the object. The object must be in the procedural mesh mode.
Source code (C++)
ObjectMeshClusterPtr my_mesh_cluster;
// ...

// switch the object to procedural mesh mode
my_mesh_cluster->setMeshProceduralMode(true);

// update the source mesh of the "my_mesh_cluster" object via the source_mesh instance
my_mesh_cluster->applyMeshProcedural(source_mesh);

Arguments

  • const Ptr<Mesh> & mesh - Mesh to be applied.

static int type ( ) #

Returns the type of the node.

Return value

Node type identifier.

bool removeClusterTransforms ( const Math::WorldBoundBox & bb ) #

Removes cluster meshes, found within the specified bounding box, from the cluster.

Arguments

  • const Math::WorldBoundBox & bb - Bounding box defining the area, within which the cluster meshes are to be removed from the cluster.

Return value

true if cluster meshes, found within the specified bounding box are successfully removed; otherwise, false.

bool removeClusterTransformsFromSphere ( const Math::WorldBoundSphere & bb ) #

Removes cluster meshes, found within the specified bounding sphere, from the cluster.

Arguments

  • const Math::WorldBoundSphere & bb - Bounding sphere defining the area, for which the transformations of cluster meshes are to be collected.

Return value

true if cluster meshes, found within the specified bounding sphere are successfully removed; otherwise, false.

bool detachClusterTransforms ( const Math::WorldBoundBox & bb, Vector< Math::mat4> & OUT_transforms ) #

Detaches cluster meshes found within the area specified by the given bounding box from the cluster and puts their transformations (local coordinates) to the specified buffer.

Arguments

  • const Math::WorldBoundBox & bb - Bounding box defining the area, within which the cluster meshes are to be detached from the cluster.
  • Vector< Math::mat4> & OUT_transforms - Buffer to store transformations of detached cluster meshes.
    Notice
    This output buffer is to be filled by the Engine as a result of executing the method.

Return value

true if cluster meshes have been detached from the cluster; otherwise false.

bool detachClusterWorldTransforms ( const Math::WorldBoundBox & bb, Vector< Math::Mat4> & OUT_transforms ) #

Detaches cluster meshes found within the area specified by the given bounding box from the cluster and puts their transformations (world coordinates) to the specified buffer.

Arguments

  • const Math::WorldBoundBox & bb - Bounding box defining the area, within which the cluster meshes are to be detached from the cluster.
  • Vector< Math::Mat4> & OUT_transforms - Buffer to store transformations of detached cluster meshes.
    Notice
    This output buffer is to be filled by the Engine as a result of executing the method.

Return value

true if cluster meshes have been detached from the cluster; otherwise false.

bool detachClusterWorldTransformsFromSphere ( const Math::WorldBoundSphere & bb, Vector< Math::Mat4> & OUT_transforms ) #

Detaches cluster meshes found within the area specified by the given bounding box from the cluster and puts their transformations (world coordinates) to the specified buffer.

Arguments

  • const Math::WorldBoundSphere & bb - Bounding sphere defining the area, for which the transformations of cluster meshes are to be collected.
  • Vector< Math::Mat4> & OUT_transforms - Buffer to store transformations of cluster meshes, in world coordinates.
    Notice
    This output buffer is to be filled by the Engine as a result of executing the method.

Return value

true if cluster meshes have been detached from the cluster; otherwise false.

bool getClusterTransforms ( const Math::WorldBoundBox & bounds, Vector< Math::mat4> & OUT_transforms ) #

Collects transformations (local coordinates) for all cluster meshes within the area specified by the given bounding box and puts them to the specified buffer.

Arguments

  • const Math::WorldBoundBox & bounds - Bounding box defining the area, for which the transformations of cluster meshes are to be collected.
  • Vector< Math::mat4> & OUT_transforms - Buffer to store transformations of cluster meshes.
    Notice
    This output buffer is to be filled by the Engine as a result of executing the method.

Return value

true, if there are transformations of cluster meshes; or false, if there are no transformations of cluster meshes found.

bool getClusterWorldTransforms ( const Math::WorldBoundBox & bounds, Vector< Math::Mat4> & OUT_transforms ) #

Collects transformations (world coordinates) for all cluster meshes within the area specified by the given bounding box and puts them to the specified buffer.

Arguments

  • const Math::WorldBoundBox & bounds - Bounding box defining the area, for which the transformations of cluster meshes are to be collected.
  • Vector< Math::Mat4> & OUT_transforms - Buffer to store transformations of cluster meshes, in world coordinates.
    Notice
    This output buffer is to be filled by the Engine as a result of executing the method.

Return value

true, if there are transformations of cluster meshes; or false, if there are no transformations of cluster meshes within the specified area.

bool getClusterWorldTransformsFromSphere ( const Math::WorldBoundSphere & bounds, Vector< Math::Mat4> & OUT_transforms ) #

Collects transformations (world coordinates) for all cluster meshes within the area specified by the given bounding sphere and puts them to the specified buffer.

Arguments

  • const Math::WorldBoundSphere & bounds - Bounding sphere defining the area, for which the transformations of cluster meshes are to be collected.
  • Vector< Math::Mat4> & OUT_transforms - Buffer to store transformations of cluster meshes, in world coordinates.
    Notice
    This output buffer is to be filled by the Engine as a result of executing the method.

Return value

true, if there are transformations of cluster meshes; or false, if there are no transformations of cluster meshes within the specified area.

bool getInstancesFromSphere ( const Math::WorldBoundSphere & bb, Vector<int> & OUT_instances ) #

Returns the indices of instances inside the bounding sphere.
Notice
The returned list of instance indices is unsorted.

Arguments

  • const Math::WorldBoundSphere & bb - Bounding sphere defining the area within which instances are to be collected.
  • Vector<int> & OUT_instances - Vector containing instance indices.
    Notice
    This output buffer is to be filled by the Engine as a result of executing the method.

Return value

true, if there is at least one instance inside the bounding sphere; or false.

Ptr<Mesh> getMeshCurrentRAM ( ) #

Returns the current source mesh used for the object and loaded to memory (RAM).

Return value

A current source mesh used for the object.

Ptr<MeshRender> getMeshCurrentVRAM ( ) #

Returns the current render mesh used for the object and loaded to video memory (VRAM).

Return value

A current render mesh used for the object.

Ptr<Mesh> getMeshForceRAM ( ) #

Returns the source mesh used for the object and loads it to memory (RAM) immediately.

Return value

A source mesh used for the object.

Ptr<MeshRender> getMeshForceVRAM ( ) #

Returns the render mesh used for the object and loads it to video memory (VRAM) immediately. At that, the static mesh will also be loaded to memory (RAM).
Notice
Loading to VRAM must be performed in the main thread only.

Return value

A render mesh used for the object.

Ptr<Mesh> getMeshAsyncRAM ( ) #

Returns the source mesh used for the object and loads it to memory (RAM) asynchronously.

Return value

A source mesh used for the object.

Ptr<MeshRender> getMeshAsyncVRAM ( ) #

Returns the render mesh used for the object and loads it to video memory (VRAM) asynchronously. At that, the static mesh will also be loaded to memory (RAM).
Notice
Loading to VRAM must be performed in the main thread only.

Return value

A render mesh used for the object.

Ptr<Mesh> getMeshProceduralRAM ( ) #

Returns the procedural source mesh used for the object and loads it to memory (RAM) using the specific streaming mode for procedural meshes. A procedural mesh is a mesh created via code, such meshes have a specific streaming mode — they are always kept in memory after creation and never unloaded until the object is destroyed via code or the mesh returns to its normal mode (streaming from a source file). Changing of the static mesh is possible only if it is in the procedural mode.

Return value

A procedural source mesh used for the object.

Ptr<MeshRender> getMeshProceduralVRAM ( ) #

Returns the procedural render mesh used for the object and loads it to video memory (VRAM) using the specific streaming mode for procedural meshes. A procedural mesh is a mesh created via code, such meshes have a specific streaming mode — they are always kept in memory after creation and never unloaded until the object is destroyed via code or the mesh returns to its normal mode (streaming from a source file). Changing of the static mesh is possible only if it is in the procedural mode.

Return value

A procedural render mesh used for the object.

bool loadAsyncVRAM ( ) #

Asynchronously loads the mesh to video memory (VRAM) if the async streaming mode for meshes is enabled. Otherwise, the forced loading is performed. This method is recommended for implementing your own prefetch system (i.e. asynchronous pre-loading of meshes to video memory before they are used).
Notice
Loading to VRAM must be performed in the main thread only.

Return value

true if the mesh is loaded successfully, otherwise false. If the mesh is already loaded to VRAM, true will be returned.

bool loadAsyncRAM ( ) #

Asynchronously loads the mesh to memory (RAM) if the async streaming mode for meshes is enabled. Otherwise, the forced loading is performed. This method is recommended for implementing your own prefetch system (i.e. asynchronous pre-loading of meshes to memory before they are used).

Return value

true if the mesh is loaded successfully, otherwise false. If the mesh is already loaded to RAM, true will be returned.

bool loadForceVRAM ( ) #

Performs force-loading of the mesh to video memory (VRAM) immediately. The forced loading to VRAM is performed in the main thread.
Notice
Loading to VRAM must be performed in the main thread only.

Return value

true if the mesh is loaded successfully, otherwise false. If the mesh is already loaded to VRAM, true will be returned.

bool loadForceRAM ( ) #

Performs force-loading of the mesh to memory (RAM) immediately.

Return value

true if the mesh is loaded successfully, otherwise false. If the mesh is already loaded to RAM, true will be returned.

bool asyncCalculateNodes ( int surface ) #

Asynchronously calculates the mesh surface internal spatial tree used for quick calculation of collisions and intersections. This method is recommended for implementing your own prefetch system (i.e. asynchronous pre-loading of meshes to memory before they are used).

Arguments

  • int surface - Mesh surface number.

Return value

true if the internal tree is calculated successfully; otherwise, false.

bool asyncCalculateEdges ( int surface ) #

Asynchronously calculates the edges of the mesh surface geometry. This method is recommended for implementing your own prefetch system (i.e. asynchronous pre-loading of meshes to memory before they are used).

Arguments

  • int surface - Mesh surface number.

Return value

true if the edges are calculated successfully; otherwise, false.

void setMeshProceduralMode ( bool meshproceduralmode ) #

Sets a value indicating if the source mesh used for the object is procedural. A procedural mesh is a mesh created via code, such meshes have a specific streaming mode - they are always kept in memory after creation and never unloaded until the object is destroyed via code or the mesh returns to its normal mode (streaming from a source file). Changing of the static mesh is possible only if it is in the procedural mode.

Arguments

  • bool meshproceduralmode - true to switch the source mesh used for the object to procedural mode; otherwise, false - normal mode (the source mesh is streamed from a source file).

bool isMeshProceduralMode ( ) const#

Returns a value indicating if the source mesh used for the object is procedural. A procedural mesh is a mesh created via code, such meshes have a specific streaming mode - they are always kept in memory after creation and never unloaded until the object is destroyed via code or the mesh returns to its normal mode (streaming from a source file). Changing of the static mesh is possible only if it is in the procedural mode.

Return value

true if the source mesh used for the object is procedural; otherwise, false - normal mode (the source mesh is streamed from a source file).

bool isMeshNull ( ) const#

Returns a value indicating if the source mesh used for the object is null (does not exist, unassigned, not loaded, etc.).

Return value

true if the source mesh used for the object is null; otherwise, false.

bool isMeshLoadedRAM ( ) const#

Returns a value indicating if the source mesh used for the object is loaded to memory (RAM).

Return value

true if the source mesh used for the object is loaded to RAM; otherwise, false.

bool isMeshLoadedVRAM ( ) const#

Returns a value indicating if the source mesh used for the object is loaded to video memory (VRAM).

Return value

true if the source mesh used for the object is loaded to VRAM; otherwise, false.
Last update: 03.09.2024
Build: ()