This page has been translated automatically.
Видеоуроки
Интерфейс
Основы
Продвинутый уровень
Подсказки и советы
Основы
Программирование на C#
Рендеринг
Профессиональный уровень (SIM)
Принципы работы
Свойства (properties)
Компонентная Система
Рендер
Физика
Редактор UnigineEditor
Обзор интерфейса
Работа с ассетами
Контроль версий
Настройки и предпочтения
Работа с проектами
Настройка параметров ноды
Setting Up Materials
Настройка свойств
Освещение
Sandworm
Использование инструментов редактора для конкретных задач
Расширение функционала редактора
Встроенные объекты
Ноды (Nodes)
Объекты (Objects)
Эффекты
Декали
Источники света
Geodetics
World-ноды
Звуковые объекты
Объекты поиска пути
Player-ноды
Программирование
Основы
Настройка среды разработки
Примеры использования
C++
C#
UnigineScript
UUSL (Unified UNIGINE Shader Language)
Плагины
Форматы файлов
Материалы и шейдеры
Rebuilding the Engine Tools
Интерфейс пользователя (GUI)
Двойная точность координат
API
Containers
Common Functionality
Controls-Related Classes
Engine-Related Classes
Filesystem Functionality
GUI-Related Classes
Math Functionality
Node-Related Classes
Objects-Related Classes
Networking Functionality
Pathfinding-Related Classes
Plugins-Related Classes
IG Plugin
CIGIConnector Plugin
Rendering-Related Classes
Работа с контентом
Оптимизация контента
Материалы
Визуальный редактор материалов
Сэмплы материалов
Material Nodes Library
Miscellaneous
Input
Math
Matrix
Textures
Art Samples
Учебные материалы
Внимание! Эта версия документация УСТАРЕЛА, поскольку относится к более ранней версии SDK! Пожалуйста, переключитесь на самую актуальную документацию для последней версии SDK.
Внимание! Эта версия документации описывает устаревшую версию SDK, которая больше не поддерживается! Пожалуйста, обновитесь до последней версии SDK.

Unigine::JointPrismatic Class

Header: #include <UniginePhysics.h>
Inherits from: Joint

This class is used to create prismatic joints.

Example#

The following code illustrates connection of two bodies (b0 and b1) using a prismatic joint.

Source code (C++)
include <UniginePhysics.h>

/* .. */

JointPrismaticPtr joint = JointPrismatic::create(b0, b1);
	
// setting joint axis coordinates
joint->setWorldAxis(vec3(0.0f, 0.0f, 1.0f));

// setting common joint constraint parameters
joint->setLinearRestitution(0.4f);
joint->setAngularRestitution(0.4f);
joint->setLinearSoftness(0.4f);
joint->setAngularSoftness(0.4f);

// setting linear damping
joint->setLinearDamping(4.0f);

// setting linear limits [-1.5; 1.5]
joint->setLinearLimitFrom(-1.5f);
joint->setLinearLimitTo(1.5f);

// setting number of iterations
joint->setNumIterations(16);

See Also#

Usage examples:

JointPrismatic Class

Members


static JointPrismaticPtr create ( ) #

Constructor. Creates a prismatic joint with an anchor at the origin of the world coordinates.

static JointPrismaticPtr create ( const Ptr<Body> & body0, const Ptr<Body> & body1 ) #

Constructor. Creates a prismatic joint connecting two given bodies. An anchor is placed between centers of mass of the bodies.

Arguments

  • const Ptr<Body> & body0 - First body to be connected with the joint.
  • const Ptr<Body> & body1 - Second body to be connected with the joint.

static JointPrismaticPtr create ( const Ptr<Body> & body0, const Ptr<Body> & body1, const Math::Vec3 & anchor, const Math::vec3 & size ) #

Constructor. Creates a prismatic joint connecting two given bodies with specified axis coordinates and an anchor placed at specified coordinates.

Arguments

  • const Ptr<Body> & body0 - First body to be connected with the joint.
  • const Ptr<Body> & body1 - Second body to be connected with the joint.
  • const Math::Vec3 & anchor - Anchor coordinates.
  • const Math::vec3 & size - Axis coordinates.

void setAxis0 ( const Math::vec3 & axis0 ) #

Sets a joint axis in the local coordinates of the first body.

Arguments

  • const Math::vec3 & axis0 - Joint axis in the coordinates of the first body.

Math::vec3 getAxis0 ( ) #

Returns the joint axis in the local coordinates of the first body.

Return value

Joint axis in the coordinates of the first body.

float getCurrentLinearDistance ( ) #

Returns the current distance between the bodies.

Return value

Current distance in units.

float getCurrentLinearVelocity ( ) #

Returns the current velocity of the attached motor.

Return value

Current velocity in units per second.

void setLinearDamping ( float damping ) #

Sets a linear damping of the joint.

Arguments

  • float damping - Linear damping. If a negative value is provided, 0 will be used instead.

float getLinearDamping ( ) #

Returns the linear damping of the joint.

Return value

Linear damping.

void setLinearDistance ( float distance ) #

Sets a target distance of the attached spring. The spring tries to move the connected bodies so that to keep this distance between them.

Arguments

  • float distance - Target distance in units.

float getLinearDistance ( ) #

Returns the target distance of the attached spring. The spring tries to move the connected bodies so that to keep this distance between them.

Return value

Target distance in units.

void setLinearForce ( float force ) #

Sets a maximum force of the attached motor.

Arguments

  • float force - Maximum force. If a negative value is provided, 0 will be used instead. 0 detaches the motor.

float getLinearForce ( ) #

Returns the maximum force of the attached motor. 0 means that the motor is not attached.

Return value

Maximum force.

void setLinearLimitFrom ( float from ) #

Sets a low limit distance. This limit specifies how far a connected body can move along the joint axis.

Arguments

  • float from - Distance in units.

float getLinearLimitFrom ( ) #

Returns the low limit distance. This limit specifies how far a connected body can move along the joint axis.

Return value

Low limit distance in units.

void setLinearLimitTo ( float to ) #

Sets a high limit distance. This limit specifies how far a connected body can move along the joint axis.

Arguments

  • float to - Distance in units.

float getLinearLimitTo ( ) #

Returns the high limit distance. This limit specifies how far a connected body can move along the joint axis.

Return value

High limit distance in units.

void setLinearSpring ( float spring ) #

Sets a rigidity coefficient of the spring.

Arguments

  • float spring - Rigidity coefficient. If a negative value is provided, 0 will be used instead. 0 detaches the spring.

float getLinearSpring ( ) #

Returns the rigidity coefficient of the spring. 0 means that the spring is not attached.

Return value

Rigidity coefficient.

void setLinearVelocity ( float velocity ) #

Sets a target velocity of the attached motor.

Arguments

  • float velocity - Target velocity in units per second.

float getLinearVelocity ( ) #

Returns the target velocity of the attached motor.

Return value

Target velocity in units per second.

void setRotation0 ( const Math::mat3 & rotation0 ) #

Sets a rotation matrix of the anchor point in a system of coordinates of the first connected body.

Arguments

  • const Math::mat3 & rotation0 - Rotation matrix in the body coordinate space.

Math::mat3 getRotation0 ( ) #

Gets a rotation matrix of the anchor point in a system of coordinates of the first connected body.

Return value

Returns a rotation matrix of the anchor point in a system of coordinates of the first connected body.

void setRotation1 ( const Math::mat3 & rotation1 ) #

Sets a rotation matrix of the anchor point in a system of coordinates of the second connected body.

Arguments

  • const Math::mat3 & rotation1 - Rotation matrix in the body coordinate space.

Math::mat3 getRotation1 ( ) #

Gets a rotation matrix of the anchor point in a system of coordinates of the second connected body.

Return value

Returns a rotation matrix of the anchor point in a system of coordinates of the second connected body.

void setWorldAxis ( const Math::vec3 & axis ) #

Sets a joint axis in the world coordinates.

Arguments

  • const Math::vec3 & axis - Joint axis in the world coordinates.

Math::vec3 getWorldAxis ( ) #

Returns the joint axis in the world coordinates.

Return value

Joint axis in the world coordinates.

void setWorldRotation ( const Math::mat3 & rotation ) #

Sets a rotation matrix of the anchor point in the world system of coordinates.

Arguments

  • const Math::mat3 & rotation - Rotation matrix in the world coordinate space.

Math::mat3 getWorldRotation ( ) #

Gets a rotation matrix of the anchor point in the world system of coordinates.

Return value

Returns a rotation matrix of the anchor point in the world system of coordinates.
Last update: 23.06.2023
Build: ()