This page has been translated automatically.
Video Tutorials
Interface
Essentials
Advanced
How To
Basics
Rendering
Professional (SIM)
UnigineEditor
Interface Overview
Assets Workflow
Version Control
Settings and Preferences
Working With Projects
Adjusting Node Parameters
Setting Up Materials
Setting Up Properties
Lighting
Sandworm
Using Editor Tools for Specific Tasks
Extending Editor Functionality
Built-in Node Types
Nodes
Objects
Effects
Decals
Light Sources
Geodetics
World Nodes
Sound Objects
Pathfinding Objects
Players
Programming
Fundamentals
Setting Up Development Environment
Usage Examples
C++
C#
UnigineScript
UUSL (Unified UNIGINE Shader Language)
Plugins
File Formats
Materials and Shaders
Rebuilding the Engine Tools
GUI
Double Precision Coordinates
API
Animations-Related Classes
Containers
Common Functionality
Controls-Related Classes
Engine-Related Classes
Filesystem Functionality
GUI-Related Classes
Math Functionality
Node-Related Classes
Objects-Related Classes
Networking Functionality
Pathfinding-Related Classes
Physics-Related Classes
Plugins-Related Classes
IG Plugin
CIGIConnector Plugin
VR-Related Classes
Content Creation
Content Optimization
Materials
Material Nodes Library
Miscellaneous
Input
Math
Matrix
Textures
Art Samples
Tutorials

Unigine::CPUShader Class

Header: #include <UnigineThread.h>

This class is used to create a custom CPU shader, for example, to implement multi-threaded mesh cluster update. Your custom CPU-shader must be inherited from this class. The corresponding sample is included in the SDK(/samples/Api/Systems/CPUShader/). Engine::swap() always waits for CPU shaders, therefore they cannot be used as tasks. CPU shader is updated with the current framerate of the application.

Here is an example of implementing a custom CPU shader:

Source code (C++)
struct UpdateClustersCPUShader: public CPUShader
{
	UpdateClustersCPUShader() {}
	virtual ~UpdateClustersCPUShader() 
	{ 
		// wait until all asynchronous operations are completed
		wait(); 
	}

	Vector<AsyncCluster> clusters;

	volatile int counter{0};
	
	// overriding the process method to performa our calculations
	void process(int thread_num, int threads_count) override
	{
		UNIGINE_PROFILER_FUNCTION;

		while (true)
		{
			int num = AtomicAdd(&counter, 1);
			if (num >= clusters.size())
				break;
			clusters[num].update();
		}
	}

	void run()
	{
		for (auto &c : clusters)
			c.swap();

		counter = 0;
		
		// running shader code in asynchronous mode
		runAsync();
	}
};

CPUShader Class

Members


static CPUShaderPtr create ( ) #

Default CPUShader class constructor.

void runSync ( int threads_count ) #

Runs CPU shader code synchronously. This method is blocking. No additional threads are created, as the Engine's thread pool is used.

Arguments

  • int threads_count - Number of threads to be used. The default value of -1 sets an optimum number of threads calculated for the particular PC.

void runAsync ( int threads_count ) #

Runs CPU shader code asynchronously. This method is non-blocking. No additional threads are created, as the Engine's thread pool is used.

Arguments

  • int threads_count - Number of threads to be used. The default value of -1 sets an optimum number of threads calculated for the particular PC.

void wait ( ) #

Waits for running asynchronous shader code execution.

int isRunning ( ) #

Returns a value indicating if the CPU shader code is currently executed.

Return value

1 if the shader code is currently executed; otherwise, 0.

int getNumThreads ( ) #

Returns the currently used number of threads.

Return value

Number of currently used threads.

virtual void process ( int thread_num, int threads_count ) #

Override this method to implement calculations.

Arguments

  • int thread_num - Current thread number. This number is not a thread ID, it just a virtual number.
  • int threads_count - Number of threads to be used.
Last update: 2024-08-16
Build: ()