JointBall Class
UnigineScript is deprecated and will be removed in future releases. Please consider using C#/C++ instead, as these APIs are the preferred ones. Availability of new Engine features in UnigineScipt is not guaranteed, as the current level of support assumes only fixing critical issues.
Inherits: | Joint |
This class is used to create ball joints.
Example#
The following code illustrates connection of two bodies (b0 and b1) using a ball joint.
JointBall joint = class_remove(new JointBall(b0, b1));
// setting joint axis coordinates
joint.setWorldAxis(vec3(1.0f, 0.0f, 0.0f));
// setting common joint constraint parameters
joint.setLinearRestitution(0.8f);
joint.setAngularRestitution(0.8f);
joint.setLinearSoftness(0.0f);
joint.setAngularSoftness(0.0f);
// setting angular damping
joint.setAngularDamping(16.0f);
// setting swing angular limit, in degrees
joint.setAngularLimitAngle(30.0f);
// setting twist angular limits, in degrees [-20; 20]
joint.setAngularLimitFrom(-20.0f);
joint.setAngularLimitTo(20.0f);
// setting number of iterations
joint.setNumIterations(16);
See Also#
- A set of UnigineScript API samples located in the <UnigineSDK>/data/samples/joints/ folder:
- ball_00
- ball_01
- ball_02
- ball_03
- ball_04
- ball_05
- ball_06
JointBall Class
Members
static JointBall ( ) #
Constructor. Creates a ball joint with an anchor at the origin of the world coordinates.static JointBall ( Body body0, Body body1 ) #
Constructor. Creates a ball joint connecting two given bodies. An anchor is placed between centers of mass of the bodies.Arguments
- Body body0 - First body to be connected with the joint.
- Body body1 - Second body to be connected with the joint.
static JointBall ( Body body0, Body body1, Vec3 anchor ) #
Constructor. Creates a ball joint connecting two given bodies with an anchor placed at specified coordinates.Arguments
- Body body0 - First body to be connected with the joint.
- Body body1 - Second body to be connected with the joint.
- Vec3 anchor - Anchor coordinates.
static JointBall ( Body body0, Body body1, Vec3 anchor, vec3 axis ) #
Constructor. Creates a ball joint connecting two given bodies with specified axis coordinates and an anchor placed at specified coordinates.Arguments
- Body body0 - First body to be connected with the joint.
- Body body1 - Second body to be connected with the joint.
- Vec3 anchor - Anchor coordinates.
- vec3 axis - Axis coordinates.
void setAngularDamping ( float damping ) #
Sets an angular damping of the joint.Arguments
- float damping - Angular damping. If a negative value is provided, 0 will be used instead.
float getAngularDamping ( ) #
Returns the angular damping of the joint.Return value
Angular damping.void setAngularLimitAngle ( float angle ) #
Sets a swing limit angle. Swing limit specifies how much connected bodies can bend from the joint axis.Arguments
- float angle - Angle in degrees. The provided value will be saturated in the range [0; 180]. 0 means no limit.
float getAngularLimitAngle ( ) #
Returns the swing limit angle. Swing limit specifies how much connected bodies can bend from the joint axis. 0 means there is no limit.Return value
Swing limit angle in degrees.void setAngularLimitFrom ( float from ) #
Sets a low twist limit angle. Twist limit specifies how much a connected body can twist around the joint axis.Arguments
- float from - Angle in degrees. The provided value will be saturated in the range [-180; 180].
float getAngularLimitFrom ( ) #
Returns the low twist limit angle. Twist limit specifies how much a connected body can twist around the joint axis.Return value
Low twist limit angle in degrees.void setAngularLimitTo ( float to ) #
Sets a high twist limit angle. Twist limit specifies how much a connected body can twist around the joint axis.Arguments
- float to - Angle in degrees. The provided value will be saturated in the range [-180; 180].
float getAngularLimitTo ( ) #
Returns the high twist limit angle. Twist limit specifies how much a connected body can twist around the joint axis.Return value
High twist limit angle in degrees.void setAxis0 ( vec3 axis0 ) #
Sets an axis of the first connected body.Arguments
- vec3 axis0 - Axis of the first body. The provided vector will be normalized.
vec3 getAxis0 ( ) #
Returns the axis of the first connected body.Return value
Axis of the first body.void setAxis1 ( vec3 axis1 ) #
Sets an axis of the second connected body.Arguments
- vec3 axis1 - Axis of the second body. The provided vector will be normalized.
vec3 getAxis1 ( ) #
Returns the axis of the second connected body.Return value
Axis of the second body.void setWorldAxis ( vec3 axis ) #
Sets a joint axis. This method updates axes of the connected bodies.Arguments
- vec3 axis - Joint axis.
vec3 getWorldAxis ( ) #
Returns the joint axis. The joint axis is calculated based on the axes of the connected bodies.Return value
Joint axis.Last update:
2020-04-10
Help improve this article
Was this article helpful?
(or select a word/phrase and press Ctrl+Enter)