This page has been translated automatically.
视频教程
界面
要领
高级
实用建议
专业(SIM)
UnigineEditor
界面概述
资源工作流程
版本控制
设置和首选项
项目开发
调整节点参数
Setting Up Materials
设置属性
照明
Sandworm
使用编辑器工具执行特定任务
如何擴展編輯器功能
嵌入式节点类型
Nodes
Objects
Effects
Decals
光源
Geodetics
World Nodes
Sound Objects
Pathfinding Objects
Players
编程
基本原理
搭建开发环境
使用范例
C++
C#
UnigineScript
UUSL (Unified UNIGINE Shader Language)
Plugins
File Formats
材质和着色器
Rebuilding the Engine Tools
GUI
双精度坐标
应用程序接口
Animations-Related Classes
Containers
Common Functionality
Controls-Related Classes
Engine-Related Classes
Filesystem Functionality
GUI-Related Classes
Math Functionality
Node-Related Classes
Objects-Related Classes
Networking Functionality
Pathfinding-Related Classes
Physics-Related Classes
Plugins-Related Classes
IG Plugin
CIGIConnector Plugin
Rendering-Related Classes
VR-Related Classes
创建内容
内容优化
材质
Material Nodes Library
Miscellaneous
Input
Math
Matrix
Textures
Art Samples
Tutorials

Temporal Anti-Aliasing

Temporal anti-aliasing (also known as TAA) is a technique used to reduce temporal aliasing (flickering or shimmering effects).

ISS without TAA.
ISS with TAA.

TAA Features#

Unlike Multisample anti-aliasing (MSAA) that performs anti-aliasing only on edges of polygons (and makes this edges smoother), Temporal anti-aliasing applies smoothing to the whole scene. In case of full deferred rendering (when the final image is composed of different texture buffers: depth, normal, etc.), MSAA will increase performance costs, because Multisample anti-aliasing should be applied to each texture buffer.

How TAA works#

The main concept of temporal anti-aliasing is to use a sub pixel jitter of scene camera every frame and then combine all this frames into the final image. So, it will take time to get a smoothed picture (for example, 5-7 frames), but with the frequency of 60 frames per second it will look seamlessly.

Simplified demonstration of the TAA camera jitter.

During rasterization process, there is a test whether the object will get into pixel or not. And the object will not be rendered if it doesn't occupy a major part of a pixel.

Vector image before rasterization.

And here we can get an error, when we have a sphere object before rasterization and get a square object after, because some parts of the sphere doesn't occupy enough pixel space.

Bitmap image after rasterization without TAA.

Not a very good rendering, right? And temporal anti-aliasing solves this problem, because camera will have a sub pixel jitter, and each part of this sphere at least once will be rendered in a frame. And after combining these frames, we will get a true sphere, not a square! Voila!

Bitmap image after rasterization with TAA.

Ghosting#

This anti-aliasing technique works perfectly for static scenes (without any moving objects). But when objects are moving, frames will significantly differ one from another and we will see a trail of "ghosts" of the moving object. This effect is called ghosting.

To get rid of ghosting, there is a velocity buffer. Velocity buffer stores information about transformations of objects. Due to this buffer, the engine knows about the object transformation and don't render the "ghosts" of the moving object. Also, the engine checks the color intensity of the pixel, because of camera jitter.

Summary#

TAA has a wide scope of usage, because it improves whole image (not only the edges of the geometry, like MSAA) including geometry, shadows, etc. But the main factor of good TAA working is optimized content on the scene: the higher FPS is, the faster temporal anti-aliasing smooths the scene. In addition to this, UNIGINE 2.0 allows you to choose the type of anti-aliasing: TAA or FXAA.

Last update: 2019-12-25
Build: ()